Botanical Survey of Human and Canine Impacts on Heathland at Cannock Chase

Flint Fields, looking towards the south.

Author: © Mark Duffell and Arvensis Ecology. January 2025.

Arvensis Ecology is a Limited Company, reg. England and Wales No. 09574121

Botanical Survey of Human and Canine Impacts on Heathland at Cannock Chase, Staffordshire.

2025

Report Status: Final Author: Mark Duffell Reviewer: Jenni Duffell Issued for and on behalf of *Arvensis Ecology*

Arvensis Ecology Column House, London Road, Shrewsbury, Shropshire, SY2 6NN

Company No. 09574121

This Report was completed by *Arvensis Ecology* Ltd on the basis of an agreed scope of works and under terms and conditions agreed with the Client. We confirm that in preparing this Report we have exercised all reasonable skill and care. *Arvensis Ecology* accepts no responsibility to any parties whatsoever for any matters arising outside the agreed scope of works. This Report is issued in confidence to the Client and *Arvensis Ecology* have no responsibility to any third parties to whom this Report may be circulated, in part or in full, and any such parties rely on the contents of the Report solely at their own risk.

All rights reserved. © Mark Duffell and Arvensis Ecology 2025.

OS Licence No. 100054589 (Arvensis Ecology).

Contents

Summary	6
Introduction	8
Location and Description of Cannock Chase	9
Expertise of surveyors	12
Survey Constraints and limitations	12
Dogs and other visitors to heathland	14
Survey Methods – assessment criteria	15
Assessing changes in plant species present and vegetation communities	15
Assessing change in nutrient status	15
Assessing negative biotic indicators	16
Assessing disturbance, abiotic and biotic indicators	18
Survey Methods: Sites and plot selection, and quadrat placement	20
Survey Methods: Botanical Survey	23
Analysis	27
Results and Discussion: Botanical Survey	28
A note on taxonomical changes	28
Species richness and diversity of plots and quadrats	29
Vegetation heights	30
Changes in Frequency and Range	32
NVC communities present	33
Ellenberg Indicator Values	42
CSR Values	45
Results and Discussion: Disturbance Survey	50
Future analysis	55
Future monitoring	56
Conclusion	57
References	60
	60

Figures

Figure 1: Location of Cannock Chase, within the West Midland conurbation, with Cannock to the
south and Rugeley to the east. Sites visited during current survey annotated
Figure 2: Map of Cannock Chase AONB, with main car parking areas indicated (P)11
Figure 3: CSR strategies and evolutionary traits (Grime 1996)16
Figure 4: CSR Triangle, displaying several species. Be pen = Silver Birch Betula pendula, Ca vul =
Heather Calluna vulgaris, Lo per = Perennial Ryegrass Lolium perenne, Po ann = Annual
Meadowgrass Poa annua, Ru obt = Broadleaved Dock Rumex obtusifolius
Figure 5: Example of setting out plots at a given site. Red circles are radius from centre of car park
site, with each zone representing poor, medium and good habitats. A plot is placed within each
zone, to allow comparison over time. Actual distances shown are examples
Figure 6: Location of sites with individual plots (a-c) shown
Figure 7: Quadrat placement, with permanent marker indicated by red asterisk. Grey lines
indicate 400mm intervals along 2m length of quadrat poles24
Figure 8: Interrelationships between communities recognised at Cannock Chase: influences of
nutrients and management
Figure 9: Example of mean CSR values from Duffields (Plots 1a, 1b and 1c)45
Figure 10: Mean CSR values for Mesotrophic grassland (a), Acid grassland (b) and Heathland (c)
plots. Distinct zonation of CSR traits between grassland communities (a, b) and heathland (c) is
apparent. This reflects the species and their CSR traits present46
Figure 11: Woodland plots when graphed showed a distribution according to their NVC
community and species composition, with the upper plot reflecting the strongly competitive
nature of Bracken Pteridium aquilinum46
Figure 12: Heathland plots when graphed showed a gradient along the C and S axis, but with very low Ruderal values
Figure 13: Acid grassland plots when graphed showed a cluster centrally with a slight shift
towards the Competitor and Stress axis
Figure 14: Mesotrophic grassland plots when graphed showed a central clustering but with a bias
towards the Competitor and Ruderal axis
Figure 15: Remaining NVC communities: \mathbf{a} = the OV25 Nettle-Creeping Thistle community, a
weedy plot with high Competitor values. \mathbf{b} = Mesotrophic grassland (MG1) with similar CSR values
as Mesotrophic grassland (MG6/7). \mathbf{c} = Bracken-Heath Bedstraw community, firmly on the C-S axis.
Figure 16: An illustration of typical distribution of dogs fouling across a given area based on the
surveyor's experience of walking across these areas during the survey. Red areas are the main
tracks/footpath leading from the car park (grey). The white area was not surveyed, but dog fouling
was visible in some of these areas54
Figure 17: Vaccinium species found at Flint Field. Left to right Cowberry V. vitis-idaea, Cannock-
berry/Hybrid Bilberry V. x intermedium and Bilberry V. myrtillus140

Tables

Table 1: Examples of high N indicator species.Table 2: Location of Sites with site code and grid reference and altitude of main car park area.Table 3: Domin values.	17 20 25
Table 4: Major taxonomic changes affecting species recording during current and previous	20
Surveys.	28
Table 5: Broad habitats with range of, and means of, species present in each quadrat. Table 6: Broad habitats with range of, and means of, vegetation heights present in each quadrat.	29 20
	30
Table 7: Sites and Plots with the NVC community identified.	33
Table 8: Mesotrophic grasslands in relation to treatment (based on Rodwell 1998)	35
Table 9: Ellenberg Indicator Values for each plot within the Duffields site.	42
Table 10: Summary of EIVs for broad habitats recorded during current survey	43
Table 11: Summary of mean CSR values for each plot.	49
Table 12: Amount of dog fouling within different broad habitats.	50
Table 13: Amount of site disturbance (and signs of deer activity) in different broad habitats	51
Table 14: Broad habitats and the range and median amount of bare ground present within	
quadrats.	52
Table 15: Presence of bike tracks, amount of trampling, and presence of litter from different	
habitats	53

Appendices

Appendix 1: Species list from all plots.	62
Appendix 2: Quadrat locations, abiotic notes and vegetation heights	65
Appendix 3: Human and animal impacts, overall plot disturbance	78
Appendix 4: Constancy tables for each plot (Constant species highlighted in bold)	82
Appendix 5: Results from MAVIS analysis of NVC data (Communities considered correct	
highlighted in bold).	106
Appendix 6a: Ellenberg Indicator Values for all plots/quadrats	111
Appendix 6b: Ellenberg Indicator Values for Light (L)	118
Appendix 6c: Ellenberg Indicator Values for Moisture (F)	119
Appendix 6d: Ellenberg Indicator Values for Reaction (R)	120
Appendix 6e: Ellenberg Indicator Values for Fertility (N)	121
Appendix 7: CSR values for all plots/quadrats	122
Appendix 8: Example photographs of sites and individual quadrats	129

Summary

Cannock Chase SAC Partnership commissioned *Arvensis Ecology* to undertake a botanical survey of areas of Cannock Chase. This report details the results of that survey undertaken August 2024.

The purpose of this survey was to provide evidence of the impact humans, associated pedestrian vehicles and dogs are having on areas including and surrounding car parks. Cannock Chase national landscape area has 9200 people living within the boundary.

The dominant habitats identified during the current survey belonged to grasslands, heathlands and woodlands. In many cases the sites surveyed showed a neat gradient of habitats from coarse mesotrophic grassland, through acid grassland and then heathland. The latter two are of a greater ecological value. An NVC survey identified eight main communities, ranging from three types of mesotrophic grassland (MG1, MG6 and MG7), to acid grassland (U4, U20), lowland heathland (H9) and woodland (W10, W16 and W25). The most species rich of these habitats was the MG1 mesotrophic grassland, although many of these species were 'weedy'. By contrast the acid grassland and heathland had fewer species present but they were of higher ecological value. In contrast was the Bracken underscrub (W25) in which Bracken often formed a monoculture.

NVC surveys identified ten communities within five broad habitats: heathland (H9), mesotrophic grassland (MG1, MG6 and MG7), open vegetation (OV25), acid grassland (U4, U20) and woodland (W10, W16 and W25). Ecologically the most important are H9, U4, W10, W16; of lesser importance is MG1. Of very low ecological importance are MG6, MG7 and OV25.

Large stands of good quality heathland (H9) were identified, but when crossed by a track, they are typically bordered by communities indicating some improvement (MG1, MG6, MG7 OV25). By the car park, and areas with high trampling and dog fouling, MG6 and MG7 grasslands predominate.

Various thoughts have been given on how these communities interact with associated management/nutrients. Key is the amount of nutrients from a mixture of sources which are in places transitioning desirable habitats to less desirable habitats.

Ellenberg Indicator Values showed clearly that areas had differing nutrient status, not derived from the surrounding soil. A trend of lower EIVs for nutrients in the heathland compared to mesotrophic grasslands was visible.

Using CSR traits, a clear distinction between mesotrophic grasslands, acid grasslands and heathland plots are shown. As expected, more Stress and Competitor tolerant plants were found within the heathland communities, with very low ruderal values (suggesting low disturbance). Mesotrophic grassland was closer to the Ruderal values with less Stress tolerant values. Acid grasslands were intermediate between heathlands and mesotrophic grasslands as expected.

The data collected will be of use when compared to any future surveys.

The areas with the highest incidence of dog fouling could be found in Mesotrophic grassland (particularly the MG6/7 communities), with heathlands typically lower (absent from 9 of 13 plots). Acid grassland, (which is of a lower sward height and lacking the woody subshrubs) had higher amounts of dog fouling than much of the heathland (3 plots with a low score, 1 each of medium and

high scores). Woodlands were typically fairly clear of dog fouling, perhaps as they are further off the main paths.

Trampling across plots was reviewed, this was similar to the amount of dog fouling with the highest being present in mesotrophic grassland (moderate 6, high 3), one acid grassland plot was also considered highly trampled. Heathlands were mixed, with 10 plots undisturbed (moderate 2, high 1). Woodlands were again relatively undisturbed.

Bike tracks and heavy trampling as expected were more evident nearer to car parks, then the pressures radiated out along footpaths and tracks, generally reducing further away from car parks (although bottle necks did cause some excessive trampling elsewhere).

Bare ground (sometimes natural, but mostly caused by excessive wear from pedestrians and cyclists), was highest in woodland (likely natural), open vegetation (2% - likely shading from coarse 'weedy' vegetation due to excessive nutrients), heathland (0-50% - but much of this was either natural or caused by recent heather management), mesotrophic grassland (0-25% - typically caused by scuffing – otherwise a naturally tight sward).

Partly due to the design of the study, those habitats which were of more ecological importance generally had fewer impacts from humans and associated animals. But this also reflected the distance away from car parks and footpaths and intentional/accidental impacts.

It is clear that humans and their dogs are having a negative impact on vegetation at Cannock Chase.

Higher amounts of disturbance from pedestrians and bikes are present near to car parks, spreading out along tracks. Typically, it would seem that humans are remaining on most of the paths, although some desire lines are present where they cut corners.

It was clear that those habitats identified as Mesotrophic Grassland (MG6/7) had the most dog fouling, trampling and other disturbance.

It is of concern that the presence and proportions of dog faeces (and in turn dog urine), which in some areas, particularly car parks and adjacent areas can be excessive. Evidence of past faeces/urine events can be seen in good quality habitats where dogs have been allowed to roam freely. Preventing dogs from roaming freely off leads would assist both with ground nesting birds and in preventing further local eutrophication and lowering of the ecological value of heathland and other habitats.

Introduction

Cannock Chase SAC commissioned *Arvensis Ecology* to undertake a baseline botanical survey of areas of Cannock Chase. This report details the results of that survey undertaken during August 2024.

The purpose of this survey was to provide evidence of the impact humans, canines and associated activities, are having on areas including and surrounding car parks.

Cannock Chase National Landscape area has a population of 9,200 people within its boundaries; further out, 2 million people live within 30 kilometres of this boundary (Cannock Chase National Landscape 2024b). Within the British Isles there are currently 12-13 million dogs, with 31% of all households having one or more dog (PFMA 2022; Anderson et al. 2023). Treatments to control ectoparasites on dogs can be harmful to the environment (including neonicotinoids), whether through direct contact such as dogs entering waterbodies as well as concerns that chemicals may excreted out in dogs urine and faeces. 86% of dog owners applied ectoparasite treatment in the preceding 12 months (Perkins and Goulson 2023).

Some of the study areas are currently in use as public car parks, and it is proposed that some of these may be closed in the future, whilst others will continue in use. Currently there are over 120 areas used for parking, both formal and informal car parks. Alongside surveying these sites, adjacent habitats will be surveyed to ascertain what the predominant habitat would be in this area if these sites were left to recolonise and without the associated impacts of the parking areas. The data collected is to be used to compare any potential changes in the flora in the future.

Some of the current concerns associated with the car parks and adjacent land is pressure from walkers and cyclists (trampling and litter), as well as dog fouling¹ (one cause of eutrophication, alongside aerial nitrogen deposition). This study should be able to provide evidence of eutrophication and/or impacts of trampling.

Predominantly Cannock Chase is a heathland (H9 *Calluna vulgaris-Deschampsia flexuosa* Heather-Wavy Hairgrass heath), with examples of semi-natural and plantation woodlands in areas. It was expected that the majority of the car parks will have no to very little ground flora present in the main areas, with coarser vegetation around the perimeter transitioning to heathland habitats further away from the parking areas. Surveying was to take place on these perimeter vegetation areas working outwards towards habitats of conservation importance.

Several methods were used to assess and quantify impacts including National Vegetation Classification survey, and walk over surveys to assess presence/absence of the following: litter, canine faeces, bicycle and other pedestrian/vehicle tracks.

No attempt was made to survey or record any non-botanical species.

¹ The term is used here to include both urination and defecation, both play a role in increasing the nutrient status of soils (alongside the introduction of pesticides from tick/flea treatments).

Location and Description of Cannock Chase

Cannock Chase or 'The Chase' is in the north of the West Midlands, surrounded by many cities, towns and villages including Stafford, Rugeley and Cannock (Figures 1 and 2).

Cannock Chase includes land within Stafford Borough Council, South Staffordshire District Council, Lichfield District Council and Cannock Chase District Council. The site sits within the vice-county of Staffordshire (VC 39).

The Chase is a large unenclosed landscape predominantly of semi-natural vegetation, with a range of habitats present, but dominated by heathlands, woodlands including broadleaved, coniferous and mixed, as well as standing and running water. It has a long history of use by man, including more recent usage as a training ground for the military, and forestry plantations.

The whole area of Cannock Chase is part of the Cannock Chase and Cank Wood National Character Area (NCA 67), which extends south from Cannock Chase to include much of the Black Country (NE 2024a). This also fits within the Cannock Chase Area of Outstanding National Beauty (AONB).

Conservation designations for the Chase including it being a Special Area of Conservation (SAC) and Site of Special Scientific Interest (SSSI) (DEFRA 2024).

The SAC is designated primarily for the large area of European Dry Heath which at Cannock is intermediate between the upland or northern heaths of England and Wales and those of southern England. These habitats are of importance to populations of butterflies, beetles, reptiles and several species of bats and to the European Nightjar (JNCC 2024).

The SSSI is designated for the vegetation assemblages with dry oak-birch woodlands including Sessile Oak *Quercus petraea* and Silver Birch *Betula pendula* woodland at Brocton Coppice, which is an eastern outlier for this westerly community. The matrix of dry heathland, acid grassland and wet flushes comprise a mixture of Ericoids, grasses, sedges and rushes. Further interest is for the invertebrate and vertebrate fauna (JNCC 2024, NE 2024b).

There are several botanical species of interest including Cowberry Vaccinium vitis-idaea, here growing at its eastern boundary, as well as the Hybrid Bilberry (or Cannock Berry) V. x intermedium. This is a natural cross between Cowberry and Bilberry Vaccinium myrtillus, first discovered in the British Isles in 1886 in Staffordshire by William Whitwell (for an undisclosed area). The first record for Cannock Chase was in 1888 by George Nicholson (BSBI 2024).

Figure 1: Location of Cannock Chase, within the West Midland conurbation, with Cannock to the south and Rugeley to the east. Sites visited during current survey annotated.

Source: Contains map data from <u>OpenStreetMap</u> 2024.

Figure 2: Map of Cannock Chase AONB, with main car parking areas indicated (P). From Cannock Chase National Landscape (2024a).

Expertise of surveyors

Mark Duffell MSc (MD) of *Arvensis Ecology* undertook the survey as an expert botanical surveyor. All botanical identification was undertaken by MD. Field surveyors employed by *Arvensis Ecology* are all professional botanists with many years of field experience, with relevant degrees and regular CPD.

Accurate identification skills are paramount to *Arvensis Ecology*, and all surveyors have a recognised qualification in identification (*Botanical Society of Britain and Ireland* Field Identification Skills Certificate (FISC). Level 4 or higher). MD has a FISC 5, and *Arvensis Ecology* now run FISCs during which they act as the 'gold standard' botanical surveyor against which candidates are assessed. MD is up to date with current taxonomy and recording techniques and has undertaken numerous surveys requiring accurate mapping and recording of vegetation. MD runs training courses for a range of government and non-government organisations in botanical identification and surveying, as well as teaching on a leading MSc in biological survey techniques and species identification².

Survey Constraints and limitations

The survey work was undertaken in August, which was chosen as an acceptable time to survey heathland and grassland habitats.

This timeframe means that later flowering species could be picked out readily but might cause some vernal species to have been missed or under-recorded (e.g., there may be some vernal species which had died back prior to the survey).

No attempt was made to survey or record any non-botanical species or to quantify the site for its potential for fauna, although the surrounding area is known for its rich herpetological and lepidoptera interest as well as other organisms, these include several legally protected species. There is no reason to believe that some or all are not making use of the surveyed area. Any actions on the site that could be damaging to these organisms would require further surveys to establish the location and extent of populations there.

In a couple of cases identifications were only made to an aggregate level:

• No attempt was made to identify Dandelion *Taraxacum officinale agg.* and *Rubus fruticosus* agg. beyond an aggregate level.

In the case of sites nearest to car parks with the heaviest amounts of dog faeces, a fingertip search within the quadrats was not undertaken. Instead, the surveyor identified species present from a standing position and used a stick or other tool to reveal any partially hidden species. In these areas it was not felt that this technique compromised recording. Outside of these areas hand searches were undertaken where it was considered hygienic.

² Manchester Metropolitan University MSc in 'Biological Recording and Ecological Monitoring'

Timing of survey: Heathlands and in particular H9 heathland can be surveyed between July-September (JNCC 2009), other habitats likely to be found on site will also fit this timeframe. Ideally any of the areas comprising semi-natural broadleaved woodland (and potential ancient woodland) would need visiting earlier in the year to pick up the vernal ground flora, but adequate information can be gained from surveying in August to identify the broad NVC habitat. Only two sites had dominant broadleaved tree cover – Sister Dora and Seven Springs. It was felt that whilst some vernal species may have been under-recorded this has not dramatically affected any results.

Otherwise, time of year, weather and surveyor skills did not impose any other constraints to the survey being carried out successfully.

All thirteen sites, and their associated Feno markers previously installed in March 2024 were refound during the botanical survey.

Dogs and other visitors to heathland

Cannock Chase National Landscape area has a population of 9,200 people within its boundaries; further out, 2 million people live within 30 kilometres of this boundary (Cannock Chase National Landscape 2024b). Within the British Isles there are currently 12-13 million dogs, with 31% of all households having one or more dog (PFMA 2022; Anderson et al. 2023).

There are serious concerns about the impact of ectoparasite (fleas, ticks etc.) treatments (containing neonicotinoids and other compounds) on dogs can be extremely harmful to the environment. This may be through direct contact of dogs swimming in water bodies, indirectly by dog bedding being washed and the treatment making its way into the water system. Another potential source is by excretion in dog urine and faeces. Currently the impacts have been researched for aquatic invertebrates, but it is likely not to be restricted to just that group. 86% of dog owners applied ectoparasite treatment in the preceding 12 months (BVA, BSAVA and BVZS 2021; Perkins and Goulson 2023).

A study looking at visitors and their behaviour on Dorset heathlands, which has similar habitats, flora and fauna to Cannock Chase found that the overwhelming majority of visitors were dog walkers over other users (Liley et al. 2006). They found that dog walkers typically lived locally, and many of these visited the sites at least daily. Short visits were the norm (under 1.5 hours), and medium sized (collie equivalent) dogs formed nearly half the visiting canines.

70% of visitors interviewed said they visited because of the wildlife, and the open nature of the heath. Likewise, 62% visited because it was their nearest open space where they could exercise their dog(s) freely (Liley et al. 2006).

88% of dog walkers felt that not cleaning up after their dog was not acceptable, with 53% always clearing up their dog's faeces. But a third only cleaned up if their dog fouled on a main path. A view was held by some walkers that because dogs were off leads and running free from paths, they did not need to pick up the dog's waste. Liley et al. (2006) also reported that the majority of visitors kept to paths, and that the major disturbance was from dogs running free away from paths, rather than human activity. Over 80% of people kept to the main tracks, but roughly half of all dogs wandered off the main tracks (Clarke et al. 2005). The problem of multiple dogs off-lead was also raised, with more likelihood of more freedom allowed by dog walkers with multiple dogs. Only 8% of the study participants kept their dogs on leads all of the time (Clarke et al. 2005; Liley et al. 2006).

The report found overall that the size of the dog did not the influence the "amount of time spent walking the dog, nor the likelihood of the owner clearing up (or not) after their dog".

Survey Methods – assessment criteria

Assessing changes in plant species present and vegetation communities

Fixed quadrats can be used to show potential changes in species present over a timeframe. Within the quadrats a list is made of individual species along with their abundance (Domin value). Additional notes on leaf litter, other litter (vegetation), bare earth and rocks would allow assessment of disturbance (e.g. from scuffing, trampling etc.).

Vegetation change can be also assessed using the National Vegetation Classification system. This system is designed for semi-natural vegetation, rather than more disturbed ruderal habitats such as those nearer the car parks. It should be possible to identify the habitats present within the more mature and homogenous stands of vegetation and these can be used as a control against which the study areas can be compared both now and in the future.

Use of NVC and fixed quadrats in any dynamic landscape can be problematic, with the vegetation within that fixed area not staying constant over time. By selecting a larger plot and allowing the surveyor to choose placement of the quadrats within a homogeneous stand within these plots should mitigate some of these concerns (more details below). Changes in use of the area (e.g. reduction in pedestrian and cycling use and associated impacts) should in time be visible in the reduction in anthropomorphic habitats towards the desired NVC communities.

Other factors that can also be assessed include age (growth phase) and structure of key heathland species (*Calluna* and other ericaceous species), as well as average vegetation heights within the quadrats.

Assessing change in nutrient status

Soil testing would be the most accurate way of measuring the abiotic status of soils including pH and nutrients. Apart from the associated costs, measurement of Nitrogen³ and other nutrients can be problematic given their mobility in soils, and seasonal changes linked to hydrology and climate can be an issue.

An alternative is to utilise Ellenberg Indicator Values (EIVs). These provide a tool for understanding the ecology of a site and have five major scales for Light (L), Moisture (F), Reaction (R), Nitrogen (N) and Salt tolerance (S). Each individual species has a value for each of these scales. Ellenberg values can be derived from current and historical data and require no abundance data to be collected at the time. A mean can be derived from lists for each area and can then be compared in future years to see if there has been any change. ElVs are an estimate and not an exact measure of the nutrient/pH status of soil but are useful in showing coarse scale differences in these statuses without the need for direct soil testing.

The use of Ellenberg Indicator Values (EIVs) will allow an assessment of the current Nitrogen status of soils and in turn indicate the amount of Eutrophication in any given area.

³ Soil fertility rather than mineral nitrogen

Assessing negative biotic indicators

The presence of some botanical species in an area may be more desirable than others in terms of the site's ecology or conservation status. By reviewing the species found within the survey it will be possible to create a list of negative and positive indicator species.

The CSR biological traits model (Grime et al. 1996) places plants into three categories Competitor, Stress-tolerator, and Ruderal model (Figure 3). Stress (constraints on production e.g. water, nutrients), Disturbance (physical damage to vegetation) and Competition (amount of neighbouring plants competing for same resources) traits separate species into these three groups or combinations of them. A species such as Ling *Calluna vulgaris* is classed as a stress-tolerant competitor (SC), meaning it can survive low to high stress but only with low disturbance. Comparatively a 'weedy' species such as Annual Meadow-grass *Poa annua* is a ruderal species, relying on quick growth and early flowering to survive the low stress and high disturbance. It is expected that those more anthropomorphic areas nearer the car park will display plants with R traits, and the more established heathland species will be a mixture of S and SC traits.

		Intensity of Stress	
		Low High	
disturbance	Low	Competitors (C)	Stress- tolerators (S)
Intensity of (High	Ruderals (R)	No viable strategy

Figure 3: CSR strategies and evolutionary traits (Grime 1996)

The CSR results can be visualised using CSR Triangle (ternary) plot (made using Tri-Plot) (Figure 4). Examples of species that form a gradient along the Ruderal and Competitor axis are shown with Annual Meadowgrass *Poa annua*, through Perennial Ryegrass *Lolium perenne* and Broadleaved Dock *Rumex obtusifolius* to Heather *Calluna vulgaris* and Silver Birch *Betula pendula*. At Cannock Chase, a desirable habitat would be relatively stable (low Ruderal value), with intermediate Stress and Competition, and if plotted on the CSR triangle would be appear around the Heather and Silver Birch (Figure 4). Less desirable habitats would be around the plots for the three other species. Caution should be taken when using CSRs as not all ruderal species are undesirable, and/or may be of conservation importance etc.

Averaging results from each plot/quadrat will enable a comparison to be made between plots/quadrats and the habitats/species they contain.

Employing both EIVs and Competitor, Stress-tolerator, and Ruderal status (Grime et al. 1996) will indicate these changes in the landscape. It is expected that species that tolerate more ruderal, disturbed soils and often of higher nutrient status are more likely to be found and in higher quantities nearer to the car parks. Comparably good quality heathland will have a reduced number of these disturbance species, excepting where particular management may have occurred e.g., over-grazing and/or burning. Examples of high N indicator species are given in Table 1.

Common Name	Scientific Name	N EIV
Broad-leaved Dock	Rumex obtusifolius	9
Garlic Mustard	Alliaria petiolata	8
An Orache	Atriplex species	8-7
A Goosefoot	Chenopodium sp.	8-7
Hemlock	Conium maculatum	8
White Dead-nettle	Lamium album	8
Common Nettle	Urtica dioica	8
Cock's-foot	Dactylis glomerata	6

Table 1. Examples of high N multator species
--

Analysis can compare any species found against the EIVs looking for species with a EIV Nutrient score of (6), 7, 8 or 9 ('*Plant often found in richly fertile places*' to '*Indicator of extreme rich situations*').

Assessing disturbance, abiotic and biotic indicators

Bare ground⁴ is a feature of heathlands and is essential for some species, particularly lichens, to thrive; an excess of bare ground though can allow the introduction of both native and non-native invasive species to take hold and lower the overall quality of the desired habitat(s). Bare ground can be assessed visually and recorded as a percentage of the whole area.

Bare ground can be assessed as 'Heavy Disturbance' if it has aggressive impacts occurring on the area e.g., bicycle and/or pedestrian tracks. It is classed as 'Undisturbed' if no signs of these artificial impacts are visible. Following the JNCC 2009 Common Standards Monitoring guidance for heathland between 1 and 10% of bare ground in the area is desirable to maintain a favourable condition.

An abundance of ruderal species can suggest recent/past major disturbances to the soil, allowing either a seed bed to be created or unearthing 'weed' species within the seed bed.

Negative indicators of trampling/disturbance could include:

• Species with Ruderal status.

Other less desirable species when found in quantity within a heathland landscape:

- Coarser grass species including False-oat Grass Arrhenatherum elatius, Yorkshire Fog Holcus lanatus and Cock's-foot Dactylis glomerata.
- Rosebay Willowherb Chamaenerion angustifolium (Syn. Chamerion angustifolium).
- Thistles *Cirsium* sp.
- Foxglove *Digitalis purpurea* (an early colonist on disturbed ground, often an indicator of disturbance after felling or other major works).
- Willowherbs *Epilobium spp*. (with exceptions)
- Ragwort Jacobaea vulgaris (Syn. Senecio jacobaea)
- Bramble *Rubus fruticosus* agg.
- Nettle Urtica dioica
- Tree and shrub seedlings.

Within a heathland the following species can be less desirable when found in quantity:

- Bracken *Pteridium aquilinum* Negative indicator if > 10% of the area (JNCC 2006).
- Gorse *Ulex europeaus and U. gallii*. Negative indicator if > 25% of total vegetation cover on dry heathland, to maintain stand diversity (JNCC 2006).

It may be useful to assess condition and age of Ling *Calluna vulgaris* to help with future management, in areas of disturbance typically only small seedlings are likely to be sporadically present; with reduced disturbance these plants can establish and age accordingly.

Post survey analysis can compare those species found with their CSR values (not available for all species) and highlight those species typically found in more ruderal habitats.

Additional negative indicators:

- Burning/over-grazing.
- Presence of trampling from pedestrians and/or cyclists, dog (or other animal) fouling, antisocial use e.g. barbeques, littering; other negative indicators of human presence.

⁴ Soil free of vegetation cover and/or litter. Rocks and stones are not included in this category.

Within each car park a brief survey can be undertaken to assess if INNS (Schedule 9 species) are present, or any other species considered undesirable, whether native or non-native e.g. abundant Bramble *Rubus fruticosus* (and see above).

Survey Methods: Sites and plot selection, and quadrat placement

A method has been chosen that is as robust as practical, allowing future surveyors to repeat easily, whilst keeping to a sensible amount of work that is not so onerous that it will never be repeated.

Sites chosen included areas with active car parks and areas where car parking may be closed in the future (Table 2). Currently there are over 120 areas used for parking, both formal and informal car parks.

The sites chosen for surveying were made in discussion with the Cannock Chase SAC Project Officer.

Car park name	Site Code	Grid Reference	Altitude (m)
Anson's Bank	13	SJ 97907 17159	204
Aspens	6	SJ 98211 15855	221
Brindley Bottom	3	SJ 99478 15416	185
Chase Road Corner	12	SJ 98085 17548	187
Coppice Hill	8	SJ 97977 19141	183
Duffields Car Park	1	SK 00353 14807	167
Flint Fields	2	SJ 99801 15683	200
Glacial Boulder	7	SJ 97946 18144	192
Penkridge Bank	5	SK 00106 16838	206
Punch Bowl	10	SJ 98371 20670	112
Seven Springs	11	SK 00464 20516	83
Sister Dora	9	SJ 97438 20785	107
White House	4	SJ 99467 16155	205

Table 2: Location of Sites with site code and grid reference and altitude of main car park area.

At each car park area (site), three areas (plots) were identified as having three distinct vegetation types (Figures 5 and 6), from less diverse trampled vegetation in the areas closer to the car parks, through medium quality habitats to better-quality homogeneous stands in the heathland/woodland areas. These plots were chosen to have similar topography, hydrology, geology, soil conditions to the disturbed areas so potentially any beneficial changes in the poorer areas after succession will translate into these communities/habitats.

To allow re-location for future surveys, each plot was marked with a Feno marker (yellow plastic block approximately 100mm³, held in place by a metal rod driven into the ground). On installation a grid reference was taken using a high accuracy GPS (Spectra SP20 handheld GNSS receiver), allowing sub 10cm accuracy (the locations are available in Appendix 2). To further aid relocation a sketch map of the locations with bearings and distances to significant features in the landscape was also made at the time and updated during the botanical survey with any additional features. Photographs from the Feno marker were also taken looking away, as well as some towards the marker from an adjacent landmark.

The Feno markers were installed either in areas adjacent to or within the survey area. In the case of poorer quality vegetation with heavy trampling and other activities the Feno marker was put to one side to avoid accidental/intentional damage, and/or prevent a tripping hazard.

In terms of site numbering, each quadrat was given a unique code, based on Site Name (1-13), plot number (a-c) and quadrat number (i-v). Thus, 11Biv is Site 11 – Seven Springs, Plot b, and quadrat four.

Figure 5: Example of setting out plots at a given site. Red circles are radius from centre of car park site, with each zone representing poor, medium and good habitats. A plot is placed within each zone, to allow comparison over time. Actual distances shown are examples.

Source: Imagery © 2024 Google, Imagery © 2024 Maxar Technologies, Map data © 2024 Google

Figure 6: Location of sites with individual plots (a-c) shown. Source: Contains map data from <u>OpenStreetMap</u> 2024.

Survey Methods: Botanical Survey

The botanical survey was undertaken on the following dates: 18th, 19th, 21st, 24th, 25th and 28th August 2024.

The timing of the survey was conducted according to JNCC 2009 recommendations for Heathland (July-September), with other habitats found on site fitting into that timeframe. Only one site (Seven Springs) contained semi-natural broadleaf woodland, and some vernal species may have been under-recorded but not dramatically enough to affect the results.

During the botanical survey, after the Feno marker had been relocated (utilising a grid reference, mixture of photographs, hand searches and a metal detector), the following was recorded:

- Site Code and plot number⁵
- Broad habitat: Ruderal/disturbed ground; coarse grassland; Acid grassland; Heathland; mosaic of Acid grassland and heathland; scrub; other (detailed notes).
- Presence of trampling and type of trampling (bikes and/or pedestrians), approximate area of site with this visible (% cover).
- Presence of dog fouling (visible signs, or coarser eutrophic species along path edges indicating dog urination).
- Presence of other negative human factors (litter, burning etc.)
- Presence of any bare earth within the plot (% cover).
- Any negative botanical indicators, e.g. invasive non-native species.
- Any management activities obvious (mowing, cutting, grazing animals/dunging present).
- As required a brief sketch map showing location of footpaths/cycle paths and/or other areas of disturbance across the plot can be made.
- Photos taken looking north, east, south and west from the Feno marker, plus overviews of habitat.

Once the plot marker was found a minimum of five **quadrats**⁶ were positioned. The distance and bearing (from Feno marker) were recorded. These quadrats were placed within homogeneous stands of representative vegetation typical to that area. For areas with higher ecological integrity, namely the established heathland, this can be used to identify the NVC community present (and in turn the likely communities that can develop in the car park areas once that use has changed). In areas of lower ecological value, these quadrats can pick up the disturbance/eutrophication indicators, initially and potentially after the change in management and natural regeneration show development of the desired NVC communities.

Size of quadrats: Within the National Vegetation Classification system typically heathlands, particularly dry dwarf shrub heaths (as present at Cannock Chase) and short grasslands would be assessed by a 2m x 2m quadrat, for more diverse heaths, and taller herbaceous vegetation 4m x 4m quadrats are recommended (Rodwell 2006). For this study a 2m x 2m quadrat was considered sufficient to capture enough detail.

⁵ In future a procedure needs to be put in place if a plot cannot be relocated and if new FENO markers should then be installed. Given the public nature of the site there is potential for markers to go 'missing'.

⁶ To allow for future work and current assessment a minimum of 5 quadrats is required to make meaningful constancy tables, it may be possible from surveyor's experience to ascertain habitat in fewer quadrats, but this makes replication in the future more problematic.

Setting out the **quadrat**, followed Natural England's LTMN protocols (2016), with gridreferences being taken from the southwestern corner of the quadrat and aligned north south (Figure 7). Quadrat locations are given in Appendix 2.

Figure 7: Quadrat placement, with permanent marker indicated by red asterisk. Grey lines indicate 400mm intervals along 2m length of quadrat poles.

Before surveying was undertaken, vegetation heights were measured using a 300mm \emptyset 200g drop disk, placed in five locations throughout the quadrat; within the centres of each 400mm interval, in the centre square plus NE, SE, SW and NW corners (see Figure 7). Heights were recorded to the nearest cm.

A list was made of all species present (including bryophytes if present) within each quadrat along with Domin cover value (Table 3: Domin values) following standard botanical recording and National Vegetation Classification techniques ((Hill, Fasham *et al.*, 2005; Rodwell 2000).

Identifications were made using Atherton *et al.* (2010), Hubbard (1992), Poland and Clement (2009, 2020), Rich and Jermy (1998) and Stace (1999, 2019). Taxonomy for Vascular plants follows Stace (2019), and for Bryophytes Atherton *et al.* (2010). Any historical records have had any taxonomical changes updated to allow analysis.

Each quadrat was photographed (facing north) and the photographs are included in this report (Appendix 8).

Domin	Percentage cover
10	91-100%
9	76-90%
8	51-75%
7	34-50%
6	26-33%
5	11-25%
4	4-10%
3	<4 (many individuals)
2	<4 (several individuals)
1	<4 (few individuals)

Table 3: Domin values

The following were be recorded for every quadrat:

- Grid reference (using a Garmin Etrex 10).
- Site code, Plot number and Quadrat number e.g. for Seven Springs. 11Aiv (11 = Seven Springs, A = plot code, iv = quadrat 4).
- Photograph taken at standing height from south of quadrat looking north.
- Date.
- Botanical and bryological species present with Domin cover values for each species.
- Note presence of and percentage cover values for litter, bare ground, rocks/stones.
- If present slope recorded using clinometer (deg.), aspect using compass (deg.)
- Broad habitat (Ruderal/disturbed ground; coarse grassland; Acid grassland; Heathland; mosaic of Acid grassland and heathland; scrub; other detailed notes).
- NVC habitat that the surveyor identified from the field (either from experience or from NVC books).
- Describe land use here briefly (e.g. trampled with signs of dog fouling; intact heathland off paths). Note any signs of trampling, disturbed ground, litter (human), dog fouling.
- Note any undesirable botanical species present in the vicinity.
- Any additional notes required, e.g. species not found within the quadrat but within the plot.

The following were noted at each plot and in individual quadrats during the survey:

Any signs of human activity

- Tracks of bike or other vehicles.
- Trampling (foot), listed as none, minor, moderate or heavy.
- Other damage e.g. littering, burning, fire sites.

Any signs of animal activities

- Presence or absence of dog faeces (including dog poo bags). Note on amount.
- Presence of any grazing livestock (or their signs).
- Presence of any deer grazing e.g. damage or faeces.

Overview on general disturbance:

• Recorded as none, minor, moderate or heavy.

Additional notes were made as required.

A method has been chosen that is as robust as practical, allowing future surveyors to repeat easily, whilst keeping to a sensible amount of work that is not so onerous that it will never be repeated.

Utilising permanent plots with mobile quadrats will allow repeated surveying and should enable surveillance/monitoring of any changes in species/habitats present as well as several abiotic variables.

All biological records will be submitted to the relevant vice-county recorder.

Analysis

Results from each site, plots and their quadrats are summarised in:

- Appendix 1: species list from all plots
- Appendix 2: Quadrat locations, abiotic notes and vegetation heights
- Appendix 3: Human and animal impacts, overall plot disturbance
- Appendix 4: Constancy tables for each plot
- Appendix 5: Results from MAVIS analysis of NVC data
- Appendix 6a: Ellenberg Indicator values for all plots/quadrats
- Appendix 7: CSR values for all plots/quadrats

The quadrat data was compiled into constancy tables, with frequency⁷ and Domin ranges (Table 3: Domin values) calculated and analysed against the NVC vegetation community keys and descriptions provided in Rodwell (2000). Data was also analysed using MAVIS (2015) for NVC analysis and Ellenberg Indicator Values (EIVs); although not all species had data available for Ellenberg values (Hill *et al.* 2004). Whilst in the field the surveyor separated plots into broad habitats, these separations were confirmed using Twinspan analysis.

Vegetation Data Outputs for each individual plot are analysed accordingly:

- NVC communities present⁸ (utilising MAVIS software).
- Species list for whole plot and individually for quadrats.
- Mean Ellenberg values for plots.
- Average vegetation height for plots.
- Signs of eutrophication (EIVs), and list of species.
- Competitor, Stress-tolerator, and Ruderal proportions for each plot.

Comparisons can be made between similar plots across sites, linking disturbance factors to vegetation types.

Report containing the details above and a summary for each plot/site area.

⁷ Frequency is used to describe how often a species is encountered in different quadrats/sample, regardless of how much of that individual species is present in each sample. Frequency classes are I = 1-20% (1 stand in 5) or scare, II = 21-40% or occasional, III = 41-60% or frequent, IV = 61-80% or constant, V = 81-100% or constant.

⁸ Many of the plant communities present, particularly in the more modified habitats (car park, paths etc.) will not fit the National Vegetation Classification closely. The NVC surveys concentrate on natural/semi-natural environments, rather than strongly anthropogenic habitats (and are not covered in any of the volumes. For the more established habitats further away they are likely to fit Acid grasslands (U) or Heathlands (H).

Results and Discussion: Botanical Survey

A total of 1006 records were collected comprising 113 different taxa (90 species of vascular plants, 20 bryophytes and 3 lichens) (Appendix 1). None of these plants belong on Schedule 8 (protected species) or 9 (invasive non-native species).

A note on taxonomical changes

Taxonomy for Vascular plants follows Stace (2019), and for Bryophytes Atherton *et al.* (2010), this is summarised in Table 4. These changes particularly apply when comparing National Vegetation Classification descriptions to current surveys.

Table 4: Major taxonomic changes affecting species recording during current and previoussurveys.

Current taxonomy	Common Name	Synonyms
Avenella flexuosa	Wavy Hair-grass	Deschampsia flexuosa
Chamaenerion angustifolium	Rosebay Willowherb	Chamerion angustifolium
Jacobaea vulgaris	Ragwort	Senecio jacobaea
Scorzoneroides		
autumnalis	Autumn Hawkbit	Leontodon autumnalis
Calliergonella cuspidata	Pointed Spear-moss	Calliergon cuspidatum
Kindbergia praelonga	Common Feather-moss	Eurhynchium praelongum
Pseudoscleropodium	Noat Easthar mass	Sclaropodium purum
purum	Neal reallief-111055	

Species richness and diversity of plots and quadrats

Quadrats had between 1 and 17 species present (Table 5, Appendix 4). The quadrats with the fewest species present were in quadrats at Punch Bowl (10Biv and 10Bv; dominated by Bracken *Pteridium aquilinum*). The quadrat with the highest diversity was at Glacial Boulder (7Av; an area with a high degree of disturbance and many species of open grounds) respectively.

More species in a plot or quadrat is not necessarily better, for instance Mesotrophic Grassland (MG1) had a mean of 10.5 species per quadrat (range 5-16), although many of these are less desirable ecologically. By contrast Heathland had far fewer species, mean of 8.4 (range 4-14), but even in the most species poor quadrat the species present were of high ecological value.

Broad Habitat	Range	Mean
Heathland (H9)	4-14	8.4
Mesotrophic Grassland (MG1)	5-16	10.5
Mesotrophic Grassland		
(MG6/7)	5-16	7.7
Mesotrophic Grassland (all)	5-16	8.6
Open Vegetation (OV25)	5-8	6.2
Acid Grassland (U4)	5-17	8.0
Woodland (W10)	2-9	4.6
Woodland (W16)	5-11	7.7
Woodland (W25)	1-3	2.0
Woodland (all)	1-11	4.74

Table 5: Broad habitats with range of, and means of, species present in each quadrat.

* codes after each broad habitat refer to the NVC community present.

Vegetation heights

No previous data is available to assess change between survey periods. Summaries of the vegetation heights for each broad habitat are given in Table 6 (Appendix 2). If a sward height was over 100cm then it was recorded as 100+ cm. Heights of trees were not measured (as per Rodwell 1998).

	Range	Median
Broad Habitat	(cm)	(cm)
Heathland (H9)	4-100+	22.8
Mesotrophic Grassland (MG1)	8-66	20.7
Mesotrophic Grassland (MG6/7)	0-62	6.8
Mesotrophic Grassland (all)	0-66	8.2
Open Vegetation (OV25)	>100	-
Acid Grassland (U4)	2-25	10.4
Woodland (W10)	2-100+	31.9
Woodland (W16)	4-69	23.0
Woodland (W25)	>100	-
Woodland (all)	2-100+	100

Table 6: Broad habitats with range of, and means of, vegetation heights present in each quadrat.

* codes after each broad habitat refer to the NVC community present.

Heathland had a median sward height of 22.8cm (range 4-100+ cm) which is fairly typical of lowland heathland with its ericoid subshrubs. Older stands may be higher, due to mature ericoids, and some of the stands which had Purple Moor-grass inflorescences skewed the heights upwards.

Mesotrophic grassland, MG1, which is often ungrazed and has a robust tussocky appearance, is the tallest vegetation type present. This had a wide range (8-66cm), with a median of 20.7cm.

In contrast MG6/MG7 grasslands had a significantly shorter sward height of 60.8cm (range 0-62cm), this was evident in the field where the pressure from footfall and grazing had reduced the sward height significantly. If this habitat was in an undisturbed area (lacking trampling and grazing) then it would likely attain much higher sward heights.

Acid grassland

Acid grassland typically never attains the stature of most mesotrophic grasslands, in part due to the lower nutrient availability. This is the case in this study, with a range of 0-25cm and median of 10.4cm.

Open vegetation

At Seven Springs (11a) a large stand of Nettles and Thistles was adjacent to the main footpath, this had a very high sward height, with all quadrats measuring over 100cm tall.

Woodlands

Tree heights were not measured, but woodlands would obviously be the tallest vegetation group here. In the ground flora it was at Punch Bowl (10b, 10c), that a W25 *Pteridium aquilinum-Rubus fruticosus* Bracken-Bramble underscrub community had a high vegetation height, all over 100cm, forming dense stands with little to no ground flora. A tree canopy was above these areas.

The presence of Bracken in W10 woodland (Seven Springs 11b, 11c) influenced the overall vegetation height where it was present (range 2-100+ cm, median 31.9cm), in comparison to the W16 woodland (Anson's Bank (13b, 13c) which had no Bracken present (range 4-69cm, median 23.0cm).

The data collected can form a baseline from which to identify any future changes.

Changes in Frequency and Range

If this survey is repeated in the future these changes within the same plot areas in frequency and range of individual species will be useful, especially post any management. Changes could be a reduction in more ruderal, disturbance loving species (CSR values), or an increase in species of lower nutrient levels (EIVs).

The design of this current survey should allow ready comparisons with future survey work.

NVC communities present

Quadrat data is provided in full in Appendix 4.

NVC Communities were identified by comparison of the compiled constancy tables against the NVC vegetation community keys and descriptions provided in Rodwell (2000). Data was also analysed using MAVIS software (2015) (Appendix 5).

In the field, plots and quadrats were placed based on the experience of the surveyor; it is useful to confirm these groupings using Twinspan analysis. As hoped, within these Twinspan results, several clear groups appeared, ranging from Heathland to improved/low quality grassland type⁹, acid grassland, and woodland.

There are primarily five broad habitats present within the survey plots, although there are intermediates or gradients between these habitats (Table 7**Table 1**).

Site/Plot	Α	В	С
1	MG7	U4	H9
2	MG7	U4	H9
3	MG7	U4	H9
4	MG7	H9	MG1
5	MG6	H9	MG1
6	MG6	H9	H9
7	U4	H9	H9
8	MG7	H9	H9
9	MG1	W10	H9
10	MG7	W25	W25
11	OV25	W10	W10
12	MG7	MG1	H9
13	U4	W16	W16

Table 7: Sites and Plots with the NVC community identified.

Heathland (H)

Within the Cannock Chase area lowland heathlands are one of the dominant habitats present. Heathland habitats were recorded from ten of thirteen sites (Duffields 1c, Flint Fields 2c, Brindley Bottom 3c, White House 4b, Penkridge Bank 5b, Aspens 6b-c, Glacial Boulder 7b-c, Coppice Hill 8b-c, Sister Dora 9c and Chase Road Corner 12c).

Keys in Rodwell (1998) suggested two main heathland communities to consider, these are H8 *Calluna vulgaris-Ulex gallii* Heather-Western Gorse heath and H9 *Calluna vulgaris-Deschampsia flexuosa* Heather-Wavy Hair-grass heath. MAVIS analysis suggested a third community H12 *Calluna vulgaris-Vaccinium myrtillus* Heather-Bilberry heath. H8 and H9 are lowland dry heaths, running from the southern Pennines down to the south coast. H12 is an upland heathland community found in upland areas of the southwest (e.g. Dartmoor), up through Wales and the Pennines north to Scotland (Rodwell 1998).

⁹ Separation of the MG6 and MG7 (and to a lesser case MG1) communities was poor, but these typically share many common species.

H12 *Calluna vulgaris-Vaccinium myrtillus* heath, whilst floristically having many of the same constant species, can be ruled out as it is described for more upland areas, above 200m (Rodwell 1998). Its distribution is primarily more northerly but also present in high altitude areas to the southwest. Climatically they are in the colder, wetter sub-montane zones that are not present at Cannock Chase. Cannock Chase is an undulating site with altitudes ranging from 71m (Tixall Broad, Sow Valley) to 242m at Castle Ring, near Cannock Wood (Cannock Chase National Landscape 2024b).

The areas surveyed that contained Heathland habitats (see above) ranged from an altitude of 107m to 221m, averaging 185m.

H9 and H12 are floristically split by the differences in cover of Heather *Calluna vulgaris*, Bilberry *Vaccinium myrtillus*, and other ericoids, some of which are locally prominent in H9 (Rodwell 1998).

H8 *Calluna vulgaris-Ulex gallii* heath has as constant species Bell Heather *Erica cinerea* and Western Gorse *U. gallii*. Ecotones between H8 and H9 make it difficult to split these two communities, but whilst Bell Heather was present in some quadrats it was always at a low cover value and never constant. The only gorse recorded during the survey was Common Gorse *U. europaeus*, which was found in plots 13B and C, which were not heathland areas. Typically, whilst found on Cannock Chase *U. gallii* is a species with a more south-westerly distribution, and found in the drier soils which also encourage *E. cinerea* growth (Rodwell 1998). H8 would appear to have been recorded on Cannock Chase Chase previously (JNCC 2024) and shares similar soil requirements to H9 (see below).

As stated, above H9 is floristically similar to H8 and H12, with an abundance of Ericoid species but at differing frequencies and cover values. Some of these Ericoids such as Crowberry *Empetrum nigrum* and Cowberry *V. vitis-idaea* can be of local importance; unusually here Hybrid Bilberry was also present within some of the plots (although not captured within the quadrats).

H9 is typical of low to moderate altitudes through the Midlands and northern England, and has been widely reported as occurring at Cannock Chase (JNCC 2024).

The soil requirements for H9 are a surface soil pH of between 3 and 4, highly oligotrophic (few nutrients) and on moderately free-draining soil, which does not tolerate compaction (Rodwell 1998).

Maintaining H8 and H9 and preventing it from succession to Oak and/or Birch woodlands requires management in the form of grazing and/or burning (Rodwell 1998). With agricultural improvements (artificial fertilisers and manuring, ploughing, re-seeding etc.) these habitats have been further reduced.

Mesotrophic Grassland (MG)

Mesotrophic or Neutral grasslands are those grasslands or meadows that lack strong calcicoles (lime loving) or calcifuges (acid loving) species. Soils typically are neutral (around pH 7). Grassland management such as hay cuts, grazing animals, addition of fertilisers and re-sowing alter the communities present. Within mesotrophic grasslands, habitats such as hay meadows can be extremely species rich; at the other end of the spectrum are the agricultural leys and pastures, which have low botanical diversity and are of scant ecological interest.

Within the Cannock Chase survey plots, excepting the acid grassland, three predominant grassland types are apparent: MG1 Arrhenatherum elatius False Oat-grass grassland, MG6 Lolium perenne-

Cynosurus cristatus Perennial Rye and Crested Dog's-tail grassland and MG7 Lolium perenne Perennial Rye leys and related grasslands.

The MG5 Cynosurus cristatus-Centaurea nigra Crested Dog's-tail and Common Knapweed grassland (not recorded during this survey), and the MG1, MG6 and MG7 grasslands all form a gradient reflecting past and current management over similar soil types (Table 8). All these communities are present in the moist and mild lowlands of the British Isles (Rodwell 1998).

NVC	MG1	MG5	MG6	MG7
Grassland type	Arrhenatherum elatius grassland	Cynosurus cristatus- Centaurea nigra grassland	Lolium perenne- Cynosurus cristatus grassland	Lolium perenne leys and related grasslands
Past/Current Management	Mown once or twice annually, ungrazed and unmanured	Mown annually for hay and, autumn- and winter-grazed, manured by livestock	Grazed, throughout year, chemically fertilised ¹⁰ and often resown	Sown swards, chemically fertilised and grazed through the year or cut for silage or amenity
Botanical				
diversity	Medium to high*	Medium to high*	Poor	Very low

Table 8: Mesotrophic grasslands in relation to treatment (based on Rodwell 1998).

* Dependent on subcommunity

The first three communities share several species e.g. *Holcus lanatus*, and it is the proportion and dominance of these and other species that is used to separate them. Likewise, the original community prior to any management can also influence how the current community is classified, for instance MG6 can be derived from MG5 or U4 grasslands (dependent on the underlying soil).

MG6 and MG7 are separated partly by the presence/absence of Crested Dog's-tail Cynosurus cristatus, both have an abundance of Perennial Rye-grass Lolium perenne.

The MG6 community is described as having a short, tight sward, dominated by grasses. At least some Cynosurus is present, along with constants of Red Fescue Festuca rubra, Holcus lanatus, Lolium perenne and White Clover Trifolium repens. Diversity of herbs is generally poor, though they may be remnants of richer diversity if the grassland was derived from MG5 or other similar grasslands. Weedy species such as Ragwort Jacobaea vulgaris and Creeping Thistle Cirsium arvense are often prominent in the sward if they take hold. Heavy trampling can shift the vegetation towards the MG7 community.

MG6 can be derived from U4 Festuca ovina-Agrostis capillaris-Galium saxatile Sheep's Fescue-Common Bent-Heath Bedstraw grassland transitioning from the U4b typical subcommunity, U4a to U4c and thence MG6 (with each change of community/subcommunity a reduction in botanical diversity occurs). U4a/U4b and MG6b all share Agrostis capillaris, Sweet Vernal-grass Anthoxanthum odoratum and Festuca rubra as constants, but the separation of the former from the latter is due to the loss or significant reduction in F. ovina, Galium saxatile and Potentilla erecta. In turn MG6 gains an abundance of Cynosurus (rare to scarce in U4), Lolium perenne (scarce in U4).

¹⁰ Whilst no active fertilisers (either artificial or natural) are being applied to Cannock Chase survey areas, the additional nutrients added by canines and other mammals are likely the factor here.

Additionally, Meadow Buttercup *Ranunculus acris*, *Dactylis glomerata*, Dandelion *Taraxacum officinale* agg. appear at higher abundances and constancies.

Rodwell (1998) notes that "Transitions between this kind of sward [U4] and MG6 *Lolio-Cynosuretum* are very widespread where there has been some agricultural improvement towards the limit of enclosure around the upland fringes, but the eclipse of more calcifuge plants and the increased constancy of *Lolium perenne* there should help effect a separation".

MG6 grassland was recorded from two plots (Penkridge Bank 5a and Aspens 6a).

The MG7 community is a very distinctive community, with abundant and constant *Lolium perenne* and very few accompanying species, of which all are agricultural species or of low botanical importance. Primarily agricultural and intensively managed grasslands, they can also include permanent amenity grasslands, where mowing/grazing is present. This habitat is one of the least ecologically important habitats in the British Isles, yet is of high value agriculturally, hence its ubiquity. MG7 can be derived from MG6 grassland (Table 8) with changes in management, increases in nutrients, and continuous grazing/mowing.

Rodwell (1998) states that "there is a complete gradation between rich, unimproved stands of the *Centaureo-Cynosuretum* [MG5] and the very species-poor swards of the *Lolium* leys [MG6 and MG7] which have been ploughed and re-seeded, fertilised and drained... In many cases, the best that can be hoped for is to place a stand at particular points along a line of continuous variation".

MG7 grassland was recorded from seven plots (Duffields 1a, Flint Fields 2a, Brindley Bottom 3a, White House 4a, Coppice Hill 8a, Punch Bowl 10a and Chase Road Corner 12a).

MG1 grasslands can be derived from several sources, including MG5 and MG6 grasslands that have had a reduction/change in grazing/mowing regimes. Typically defined by coarser species such as *Arrhenatherum elatius* and *Dactylis glomerata*.

At one plot Chase Road Corner (12B) the underlying vegetation was derived from heathland/acid grassland, with Wavy Hair-grass Avenella flexuosa, Festuca ovina, Mat Grass Nardus stricta, Purple Moor-grass Molinia caerulea and two ericoids Vaccinium myrtillus and V. vitis-idaea. None of these were frequent or at a high abundance. There was an overall feel of a heathland with encroaching MG1 vegetation species in this area. This long narrow plot was an ecotone of the two neighbouring habitats, being sandwiched between the footpath with its coarse heavily trampled and species poor grassland (MG6/MG7) and further away fine stands of lowland heathland (H9). The lack of trampling and major disturbance was allowing remnants of the heathland/acid grassland to remain, but occasional disturbance and occasional local enrichment (from canine urine and faeces) was promoting coarser vegetation. The lack of grazing here has caused the proliferation of Arrhenatherum and Holcus lanatus. It would be useful to monitor the encroachment of the MG1 community into the heathland.

MG1 grassland was recorded from four sites (White House 4c, Penkridge Bank 5c, Sister Dora 9a, and Chase Road Corner 12a and 12c).

Acid Grassland (U)

Acid grassland often formed mosaics within the lowland dry heathland on site, and in many cases particularly nearer the car parks had shifted to a more mesotrophic grassland type (MG1, MG6 or
MG7). It was recorded from four plots (Duffields 1b, Brindley Bottom 3b, Glacial Boulder 7a and Anson's Bank 13a). These habitats proved to be U4 grassland, borne out by the keys in Rodwell and MAVIS analysis, although some areas could be seen as an ecotone with some of the more eutrophic sites nearby.

U4 *Festuca ovina-Agrostis capillaris-Galium saxatile* Sheep's Fescue-Common Bent-Heath Bedstraw grassland is widespread across the British Isles, distributed from the Southwest, throughout Wales and the Welsh Marches, into Staffordshire and the Peak District, north up through and into Scotland. U4 grassland is a submontane community (100-500m (exceptionally 800m)), found on acid, low nutrient soils and it is maintained by grazing (Rodwell 1998).

The constant species for the U4 community are Common Bent Agrostis capillaris, Sweet Vernalgrass Anthoxanthum odoratum, Sheep's Fescue Festuca ovina, Heath Bedstraw Galium saxatile and Tormentil Potentilla erecta.

Within the U4 community, it was clear that this survey had examples of several different subcommunities including U4a *Festuca ovina-Galium saxatile* typical subcommunity and U4b *Festuca ovina-Galium saxatile Holcus lanatus-Trifolium repens* subcommunity.

The U4b subcommunity is more mesotrophic than the type community, with species such as Crested Dog's-tail *Cynosurus cristatus,* Cock's-foot *Dactylis glomerata,* Yorkshire Fog *Holcus lanatus* and Smooth Meadow-grass *Poa pratensis* becoming more prominent. Sheep's Fescue is replaced by Red Fescue *F. rubra,* and other constant species are less common e.g. Heath Bedstraw and Tormentil, instead replaced by White Clover *Trifolium repens.* This subcommunity is often more common in the lowlands (100-250m), with a warmer drier climate and a more fertile soil that the other subcommunities (Rodwell 1998). Some quadrats within plots whilst still identifiable as U4 were transitional to MG6b (e.g. Duffields 1b and Brindley Bottom 3b) as discussed above.

If areas of U4 grassland are left unmanaged then Bracken *Pteridium aquilinum* can take hold and dominate the stands, this then becomes the U20 *Pteridium aquilinum-Galium saxatile* Bracken-Heath Bedstraw community. Bracken is a component of U4 but at much lower frequency, particularly in the U4e *Vaccinium myrtillus-Deschampsia flexuosa* subcommunity. U20 is definitely present at Cannock Chase and often bordered areas of U4 surveyed e.g. at Flint Fields (2b).

Vegetation heights varied across this community, with those at Glacial Boulder the lowest (mean 3.6cm) to Brindley Bottom (11.3cm).

Acid grassland often formed mosaics within the lowland dry heathland, and in many cases, particularly nearer the car parks, had shifted to a more mesotrophic grassland type (MG1, MG6 or MG7).

With agricultural improvements U4 grassland can be transitioned to a Mesotrophic Grassland MG6b *Lolium perenne-Cynosurus cristatus* Perennial Ryegrass-Crested Dog's-tail grassland. Here Sheep's Fescue is absent, replaced by Red Fescue (also present in U4a and U4b), with only scrappy cover of Tormentil and Heath Bedstraw, and other acidophiles absent (Bilberry, Wavy Hair-grass and Mat Grass). A higher abundance of Yorkshire Fog, White Clover and Mouse-ear Chickweed *Cerastium fontanum* is found. Two grasses which are constant are Perennial Ryegrass and Crested Dog's-tail.

Whilst no liming of the soils (to increase pH) is deliberately happening¹¹, increases in nutrient status via animals urine and faeces are widespread in many of the sites surveyed.

The increase in nutrients preferentially selects mesotrophic species (Yarrow, Mouse-ear Chickweed, Yorkshire Fog, Selfheal and White Clover) and reduces the prevalence of calcifugous, oligotrophic species (Heath Bedstraw, Bilberry and, Wavy Hair-grass).

If U4 grassland is left unmanaged either through changes in burning and/or grazing, then Bracken *Pteridium aquilinum* can take hold and form sparse to dense stands over the grassland. This appears to be the case in Flint Fields (2b).

Open Vegetation

At Seven Springs (11a), an open vegetation community was present, OV25 Urtica dioica-Cirsium arvense Nettle-Creeping Thistle community. This trackside stand of vegetation was dominated by Nettle and Creeping Thistle, as well as Arrhenatherum elatius and Holcus lanatus. Other species present were 'weedy' species such as Thistles Cirsium sp., Cleavers Galium aparine, Wood Avens Geum urbanum and Bramble Rubus fruticosus agg. This plot had the highest Ellenberg Indicator Value for Nitrogen (see below). The OV25 community is considered of low ecological value.

Woodlands (W)

Three distinct areas had significant tree cover at Punch Bowl (10b-c), Seven Springs (11b-c) and Anson's Bank (13b-c). Visually the different sites could be separated into distinct communities, and this was confirmed with Rodwell (1998) and MAVIS analysis. In all areas the predominant trees were a mix of Pedunculate Oak *Q. robur* and Silver and Downy Birches *Betula pendula* and *B. pubescens* respectively.

W10 *Quercus robur-Pteridium aquilinum-Rubus fruticosus* Pedunculate Oak-Bracken-Bramble woodland community was found at Sister Dora (9b) and Seven Springs (11b-c). Of the two sites, Seven Springs was the best example, with a canopy of Silver Birch and Pedunculate Oak, sub canopy of Bracken, and a moderately species rich ground flora.

W16 *Quercus spp.-Betula spp.-Deschampsia flexuosa* Oak-Birch-Wavy Hairgrass woodland community was present at Anson's Bank (13b-c). The canopy was mostly Birch *Betula* spp. with sporadic Pedunculate Oak. Here brambles dominated the understorey in much of the site, but the additional ground flora denoted an acid soil (supported by the associated EIVs).

At Punch Bowl, a very sparse woodland predominantly of Birch *Betula spp.* and Pedunculate Oak, but with rare Rowan *Sorbus aucuparia*, overtopped a very dense stand of Bracken. This formed the W25 *Pteridium aquilinum - Rubus fruticosus* Bracken-Bramble underscrub community, as is typical Bracken was the dominant species, with Bramble only present in half the quadrats.

These woodlands are classified by their canopy, ground flora and the underlying soils. W10 forms on brown earths with a low pH status, whilst W16 can be found on rankers, brown podzolic soils, typically base poor with low nutrient soils (Rodwell 1998). W25 bracken stands typically were found

¹¹ Although testing of the hardcore used in car parks and footpaths would be useful to determine if inert or calcareous, and thus increasing the pH levels of the surrounding soils.

transitioning into W10 woodlands, particularly along woodland rides and paths. Stands can remain isolated from previous woodland, with sparse trees (Rodwell 1998).

Unclassified habitat

One plot could not be strongly identified to a particular NVC community. At Sister Dora (9b), from an initial view it appeared to be a woodland with stands of mostly Pedunculate Oak *Quercus robur*, with some Silver Birch *Betula pendula*¹² present. The understorey was extremely poor with only six species present and considerable bare ground (40-80%). The constant species were Common Bent and Springy Turf-moss *Rhytidiadelphus squarrosus*. Otherwise, scarce and rare with very low cover were Rough-stalked Feather-moss *Brachythecium rutabulum*, Cock's-foot *Dactylis glomerata*, Heath Bedstraw and Bramble. The woodland keys in Rodwell (1998) were unsatisfactory at splitting into either W10 or W16, given the paucity of species in the quadrat. MAVIS likewise gave many unlikely communities, although it did give W10d *Holcus Ianatus* Yorkshire Fog subcommunity (23.22%), but currently what is observed at the site does not fit that community description well. To the surveyor it looked like this land had previously been a mixture of heathland (H9) and acid grassland (U4), that has had tree planting taking place in the past 25-40 years. In time this woodland will develop further, but currently it has a very poor ground flora, which will take a very long time to improve florally. There is potential here to assist the ground flora with planting of suitable material (if this is done it needs flagging up to future surveyors to avoid biasing future surveys).

Summary of NVC communities present on site

Habitats of ecological importance.

Two key habitats of Cannock Chase are the Heathlands (H9) and Acid Grasslands (U4) as well as the mosaics they can create. These are botanically and ecologically desirable communities and are in part the reason for SSSI designation on parts of the Chase.

The woodland communities (W10 and W16) are both of high value for flora and fauna.

Habitats of intermediate to poor ecological importance

Potentially some of the areas identified as MG6 *Lolium perenne-Cynosurus cristatus* Perennial Rye and Crested Dog's-tail grassland could be derived from U4 grassland. With correct management and reduction in nutrients etc. they could be drawn back to a more species rich and ecologically important habitat.

Likewise, MG1 Arrhenatherum elatius False Oat-grass grassland (which often overtops other communities due to lack of management e.g. MG5, some heathlands) where it borders habitats of ecological importance could potentially be drawn back to a more desirable community.

The W25 Bracken underscrub is of lower value than other woodland communities recorded during this survey, but they offer buffer zones between people and the surrounding woodlands. This is of benefit for the flora and fauna in the area, in particular deer.

Habitats of very low ecological importance

Widespread near car parks and areas of high human/pet animal impact are the Mesotrophic

¹² One of the Silver Birch had an old stake adjacent to its trunk.

Grasslands (MG7 *Lolium perenne* Perennial Rye leys and related grasslands). These have very poor botanical diversity and are of poor ecological value to other animals.

Another undesirable vegetation type typical of high nutrient areas is the OV25 *Urtica dioica-Cirsium arvense* Nettle-Creeping Thistle community, as the community name suggests this is a coarse unpleasant habitat with fierce vegetation. Some ecological value for visiting pollinators can be found in the flowers and vegetation but only if contained in smaller areas and not impacting more important habitats.

NVC overview and summary

For the habitats recorded during the survey¹³ it is clear that many are on an environmental abiotic and biotic gradient. Changes in management and/or input of nutrients from animals or other sources (including aerial deposition) can influence the habitats present. An attempt has been made to identify the key habitats and their environmental drivers, along with how they might transition from one community to another with the likely cause (Figure 8).

At Cannock Chase the climax community would be woodlands (either W10 or W16 depending on the underlying soils), the woodlands edges would include the W25 Bracken underscrub with a sparse tree canopy above.

Heathland (H9) and Acid grassland (U4) are plagioclimax communities, an area of land where the influences of humans have prevented the ecosystem from developing further to the climax vegetation (woodland).

Human management of the heathland and grassland ensures its continuity, although the resulting vegetation is also influenced/impacted by other inputs. Lack of grazing and an associated increase in thatch, as well as other nutrient inputs can cause the acid grassland to transition to a coarse tussocky mesotrophic grassland (MG1). With careful management it may be possible to turn back these areas to heathland/acid grassland, but the long-term effects of nutrients can be a major problem. Heavy trampling and disturbance of acid grassland alongside increase in nutrients and changes in grazing (cutting by machinery) can create a different transition to mesotrophic grasslands (MG6 and MG7). In these extreme cases of higher nutrient grasslands, it can be extremely challenging to return them to good quality acid grassland in the medium term.

¹³ This survey does not comprise a complete list of all the NVC communities present on Cannock Chase.

Figure 8: Interrelationships between communities recognised at Cannock Chase: influences of nutrients and management.

Ellenberg Indicator Values

Ellenberg Indicator Values (EIVs) provide an additional tool for understanding the ecology of a site and have four major scales for Light (L), Moisture (F), Reaction [linked to pH] (R), and Fertility [linked to nitrogen] (N) (Hill *et al.,* 2004). Each individual species has a value for each of these scales.

EIVs were derived from the species list contained within the individual quadrats as calculated by MAVIS (2015) (Appendix 6a). This gave a value against which all the three plots could be compared to indicate if there were any differences between them (Table 10). These values reflect the hydrology, geology and soils of the site and the influence they have on the surrounding vegetation, each EIV is dealt with separately below.

As an example (Table 9) Duffields EIVs are given below. Plot A was a mesotrophic grassland (NVC: MG7), Plot B acid grassland (U4) and Plot C heathland (H9). Only minor differences between Light and Moisture (F) values are displayed, in part due to controlling for aspect, and topography when setting out the plots. More significant are the differences between Nutrient values (range 2 to 5.5) and Reaction (range 3-6). Heathland requires a soil with both a low nutrient and reaction status, whilst acid grassland has a relatively small increase of both, and mesotrophic grassland a major increase in both compared to the heathland plot.

Duffields						
Site 1	L	F	R	Ν	Broad habitat	
Plot A	7	5.5	6	5.5	Mesotrophic grassland	
Plot B	7	6	4	4	Acid grassland	
Plot C	6	5	3	2	Heathland	

Table 9: Ellenberg Indicator Values for each plot within the Duffields site.

Ellenberg Indicator values for Light (L) are showing the open nature of the site, with some shading present around the edges from taller vegetation¹⁴. The EIVs for light levels are relatively high, described as 'Plant generally in well-lit places, but also occurring in partial shade', though showing some variation (L = 6-7, mean 6.5 - Appendix 6b). As expected, those quadrats placed within the woodland areas had a lower L value (6) compared to heathland/grassland plots in the open (L = 7). A partial list of the Ellenberg Light values is contained in Appendix 6b.

Ellenberg Indicator values for Moisture (F) are showing the general uniformity of moisture values across the plots (F = 4-6.3, mean 5.4 - Appendix 6c). The site contains species that are 'Moist site indicators, mainly on fresh soils of average dampness'. The highest moisture values could be found in the heathland (F = 5.2-6.3, mean 5.8), and lowest in the mesotrophic grassland (F = 4-5.7, mean 5.2). A partial list of the Ellenberg Moisture values is contained in Appendix 6c.

Ellenberg Indicator Values for Reaction (R): The EIVs for Reaction (linked to pH value) show the range for the site to be a gradient from lowest in heathland (R = 2-3.5, mean 2.7), through acid grassland (R = 3.9-4.9, mean 4.6), and into Mesotrophic grassland (R = 5-6, mean 5.6). Woodland plots were similar in reaction value to acid grassland with medium low values (R = 3.9-4.5, mean 4.0). The area as a whole ranged from 2-6, with a mean of 4.6 (Appendix 6d).

¹⁴ When setting out the plots attempts were made to control for differences in topography, aspect and slope, to allow only comparisons for plant communities and nutrient status to be made.

Ellenberg Fertility (N) value: The EIVs for fertility (linked to nitrogen) shows the biggest range across the different broad habitats, and it is these differences which are in part the reason for this study. The sites with the lowest nutrient values were the heathland plots (N = 2-3.4, mean 2.5 Appendix 6e). Acid grassland plots were then the next lowest (N = 3.3-4.4, mean 3.9). Woodland plots were intermediate between the two grasslands (N = 3.8-4.5, mean 4). Mesotrophic grassland (whether MG1, MG6 or MG7 NVC communities), were similar (N = 4.3-5.5, mean 5). One plot (Seven Springs 11a) which had an open vegetation community dominated by False Oat-grass *Arrhenatherum elatius*, Yorkshire Fog *H. lanatus* and Nettle *Urtica dioica* had the highest N value of 6.5.

If taken as a whole the range for all plots was 2-6.5, mean 4.3.

	Summary	L	F	R	Ν
lloothland	Range	6.3-7.0	5.2-6.3	2.0-3.5	2.0-3.4
Heathtand	Average	6.6	5.8	2.7	2.5
Acid Crassland	Range	6.4-7.1	5.2-5.4	3.9-4.9	3.3-4.4
Aciu Grassialiu	Average	6.8	5.4	4.6	3.9
Bracken over Acid Grassland	Range	6.2	5.8	3.4	3.5
Mesotrophic Grassland	Range	6.5-7.1	4.9-5.4	5.0-5.9	4.6-5.5
MG6/7	Average	6.9	5.2	5.6	5.1
Mesotrophic Grassland	Range	6.6-7.0	5.0-5.7	5.1-6.0	4.3-5.4
MG1	Average	6.9	5.3	5.6	4.8
Mesotrophic Grassland	Range	6.5-7.1	4.0-5.7	5.0-6.0	4.3-5.5
All	Average	6.9	5.2	5.6	5.0
OV Vegetation	Range	6.7	5.7	6.6	6.5
Woodland	Range	6.0-6.6	5.2-5.6	3.9-4.4	3.8-4.1
W10	Average	6.2	5.4	4.1	3.9
Woodland	Range	6.0-6.2	5.4-5.6	3.9-4.5	4.0-4.5
W16	Average	6.1	5.5	4.2	4.25
Woodland	Range	6.0	5.3	3.9	3.9
W25	Average	6.0	5.3	3.9	3.9
Woodland	Range	6.0-6.6	5.2-5.6	3.9-4.5	3.8-4.5
All	Average	6.1	5.4	4.0	4.0

Table 10: Summary of EIVs for broad habitats recorded during current survey.

Habitat EIVs summary:

Heathland

The median values for all heathland plots show that they contain plants requiring well-lit places (e.g., with little shrub or tree cover), with soils that are moist for the majority of the year, with a pH that is acid, with low fertility.

Acid grassland

The median values for all acid grassland plots show that they contain plants requiring well-lit places (e.g., with little shrub or tree cover), with soils that are moist for the majority of the year, with a pH that is acid to moderately acid, and more or less infertile.

Mesotrophic grassland

The median values for all mesotrophic grassland plots show that the plots contain plants that require well-lit places (e.g., with little shrub or tree cover), with soils that range from moist for the majority of the year to just damp, with a pH that is moderately acid, but with intermediate fertility (and more species present that require richly fertile places).

Woodland

The median values for all woodland plots show that the plants they contain require slightly lower light levels than other plots, (semi-shade to well-lit places), with soils that are moist for the majority of the year, with a pH that is moderately acid, with low to intermediate fertility.

If this survey is repeated in the future these EIVs data from all the plots/quadrats can be compared against this previous survey to assess any changes, with a Mann-Whitney U test applied to test significance.

Using Ellenberg indicator values will allow analysis of future surveys as a broad proxy for monitoring soil nutrients, and in turn plant communities.

CSR Values

The CSR biological traits model (Grime et al. 1996) places plants into three categories Competitor, Stress-tolerator, and Ruderal (Figure 3). Stress (constraints on production e.g. water, nutrients), Disturbance (physical damage to vegetation) and Competition (amount of neighbouring plants competing for same resources) traits separate species into these three groups or combinations of them. A species such as Ling *Calluna vulgaris* is classed as a stress-tolerant competitor (SC), meaning it can survive low to high stress but only with low disturbance. Comparatively a 'weedy' species such as Annual Meadow-grass *Poa annua* is a ruderal species, relying on quick growth, early flowering to survive the low stress and high disturbance. It was expected that those more anthropomorphic areas nearer the car park will display plants with R traits, and the more established heathland species will be a mixture of S and SC traits.

The CSR values for each quadrat and the means for each plot were compiled from MAVIS (Appendix 7) and summarised in Table 11 and Figures 9 - 15.

Figure 9: Example of mean CSR values from Duffields (Plots 1a, 1b and 1c).

- 1a: Mesotrophic grassland (MG7), vegetation types of moderate to high productivity (growth), with only some disturbance (R) and stress (S).
- 1b: Acid grassland (U4) with less productive vegetation (less growth), in part caused by higher stresses. Disturbance and competition lower than 1a.
- 1c: Heathland (H9) high amount of long-lived perennials (stress tolerant), but with slow growth and reproduction.

If this survey is repeated in the future these CSR data from all the plots/quadrats can be compared against this previous survey to assess any changes.

Using CSR values will allow analysis of future surveys as a broad proxy for monitoring soil nutrients, disturbance and in turn plant communities.

Figure 10: Mean CSR values for Mesotrophic grassland (a), Acid grassland (b) and Heathland (c) plots. Distinct zonation of CSR traits between grassland communities (a, b) and heathland (c) is apparent. This reflects the species and their CSR traits present.

Figure 11: Woodland plots when graphed showed a distribution according to their NVC community and species composition, with the upper plot reflecting the strongly competitive nature of Bracken *Pteridium aquilinum*.

Figure 12: Heathland plots when graphed showed a gradient along the C and S axis, but with very low Ruderal values.

Figure 13: Acid grassland plots when graphed showed a cluster centrally, with a slight shift towards the Competitor and Stress axis.

Figure 14: Mesotrophic grassland plots when graphed showed a central clustering but with a bias towards the Competitor and Ruderal axis.

Figure 15: Remaining NVC communities: a = the OV25 Nettle-Creeping Thistle community, a weedy plot with high Competitor values. b = Mesotrophic grassland (MG1) with similar CSR values as Mesotrophic grassland (MG6/7). c = Bracken-Heath Bedstraw community, firmly on the C-S axis.

Site and Site Code	С	S	R	
Duffields 1A	3.41	2.50	2.59	
Duffields 1B	2.48	3.52	2.04	
Duffields 1C	2.03	3.97	1.28	
Flint Fields 2A	2.98	2.60	2.88	
Flint Fields 2B	3.10	2.90	1.29	
Flint Fields 2C	2.68	3.32	1.00	
Brindley Bottom 3A	2.61	2.39	3.11	
Brindley Bottom 3B	2.84	3.04	2.56	
Brindley Bottom 3C	3.07	2.93	1.00	
White House 4A	3.21	2.69	2.79	
White House 4B	2.70	3.30	1.40	
White House 4C	3.38	2.38	2.63	
Penkridge Bank 5A	2.76	2.67	2.98	
Penkridge Bank 5B	2.38	3.63	1.25	
Penkridge Bank 5C	3.11	2.78	2.74	
Aspens 6A	2.80	2.32	3.20	
Aspens 6B	2.37	3.56	1.33	
Aspens 6C	2.89	3.11	1.00	
Glacial Boulder 7A	2.44	3.31	2.69	
Glacial Boulder 7B	1.97	4.03	1.12	
Glacial Boulder 7C	2.46	3.54	1.00	
Coppice Hill 8A	2.97	2.70	2.73	
Coppice Hill 8B	3.06	2.94	1.12	
Coppice Hill 8C	3.00	3.00	1.00	
Sister Dora 9A	2.40	2.73	3.00	
Sister Dora 9B	2.67	3.33	1.56	
Sister Dora 9C	2.11	3.89	1.59	
Punch Bowl 10A	3.17	1.97	2.83	
Punch Bowl 10B	4.43	1.57	1.00	
Punch Bowl 10C	4.43	1.57	1.00	
Seven Springs 11A	3.97	2.03	1.78	
Seven Springs 11B	3.89	2.11	1.29	
Seven Springs 11C	4.21	1.79	1.16	
Chase Road Corner 12A	2.81	2.24	3.19	
Chase Road Corner 12B	3.00	3.00	1.74	
Chase Road Corner 12C	2.58	3.42	1.00	
Anson's Bank 13A	2.58	3.30	2.58	
Anson's Bank 13B	3.28	2.72	1.49	
Anson's Bank 13C	2.59	3.41	1.62	

 Table 11: Summary of mean CSR values for each plot.

Results and Discussion: Disturbance Survey

Various abiotic and biotic factors were assessed alongside the main vegetation survey.

Summaries of these results are given in Tables 12-15.

Colour coding (traffic lights) has been used within the following Tables (12-15) to help identify any issues, for habitats green is the most desirable, red the least and orange intermediate. For other factors green is considered best, with red at the opposite end of the spectrum.

Prood Hobitat		No of			
	None	Low	Moderate	High	plots
Heathland (H9)	9	3	1	-	13
Mesotrophic Grassland (MG1)	-	2	2	-	4
Mesotrophic Grassland (MG6/7)	-	-	4	5	9
Open Vegetation (OV25)	-	-	-	1	1
Acid Grassland (U4)	-	3	1	1	5
Woodland (W10)	2	1	-	-	3
Woodland (W16)	2	-	-	-	2
Woodland (W25)	2	-	-	-	2

Table 12: Amount of dog fouling within different broad habitats.

It is clear from Table 12 that dog fouling is highest in the two Mesotrophic grasslands, particularly the MG7 community. Least affected are the more desirable vegetation community types: heathland, acid grassland and woodlands. Areas of acid grassland are more affected than heathlands, presumably in part as they are easier to access by dogs running free, but often (but not always) the heathlands were furthest from the car parks.

During the survey it was clear that transects of dog faeces were present along the path sides, with an initial high amount nearest the car park and then reducing the further away. After that, distribution along paths was more scattered. But it was common to find signs of localised enrichment scattered throughout the heathlands, indicative of free-roaming dogs defecating and being left in situ. The localised enrichment within the good quality heathland is of most concern, with the increase of nutrients and other disturbance (scratching after defecation) can open up areas of the heathland to invasion by negative habitat species. Once established these can further encroach into the prime heathland habitats, degrading the quality overall.

An illustration of the typical pattern of dog fouling across a given area based on the surveyor's experience of walking across these areas during the survey is given in Figure 16.

Prood Hobitat	Deer signs	S	No of		
Βίθαυ Παβίτατ	(no plots)	None	Moderate	High	plots
Heathland (H9)	Yes (6)	10	2	1	13
Mesotrophic Grassland (MG1)	Yes (3)	3	1	-	4
Mesotrophic Grassland (MG6/7)	Yes (4)	-	6	3	9
Open Vegetation (OV25)	No	-	-	1	1
Acid Grassland (U4)	Yes (4)	-	4	1	5
Woodland (W10)	Yes (3)	2	1	-	3
Woodland (W16)	Yes (2)	2	-	-	2
Woodland (W25)	No	1	1	-	2

Table 13: Amount of site disturbance (and signs of deer activity) in different broad habitats.

A general view on the disturbance of each plot was made taking into account trampling, dog fouling and types of vegetation present (Table 13). It was planned to use presence/absence of deer signs to make an assessment of how disturbed by dogs the site was, but with the amount of feeding, general habituation and large population of deer this has not been as clear as would have been liked.

Bare ground can be another indicator of disturbance, and this data was collected during the vegetation survey, sites varied from 0-90% bare ground (Table 14).

Mesotrophic grassland (MG1) by its very nature is a dense grassland with very little bare ground, in a few quadrats the open areas were due to ants' nests.

Mesotrophic grassland (MG6/7) had a variation in disturbance (0-25%, median 1%), the larger areas of disturbance are due to two quadrats at Aspens (6A) associated with site vehicles that have accessed the site here by the gateway.

U4 grassland can have small areas of disturbance (0-10%, median 0%) with a closed sward (a more open sward, dominated by small tussocks of grasses belong to the related grassland community: U1 *Festuca ovina-Agrostis capillaris-Rumex acetosella* Sheep's Fescue-Common Bent-Sheep's Sorrel grassland which are found elsewhere on site.

The areas with the highest bare ground were woodland quadrats, which is not unusual in these habitats. The Bracken stands (W25) at Punch Bowl (10b-c) had 90% bare ground beneath them. This can be typical of the dominance and shading that occurs with dense stands of Bracken. Next at Sister Dora (9b) was a community which did not conclusively key out a particular woodland community (see NVC section), this had a range of 40-80% bare ground, with a median of 75%. The last woodland habitat (W10) at Seven Springs (11b-c) had a median of 7%, with a range of 1-20%.

After woodlands, heathland had the biggest range (0-50%) with a very low median of 2%. The large range is due to one plot (Coppice Hill 8c, range 0-50%, median 2%) which had a heather cut taken last year with the associated scuffing from cutting machinery, and gaps from senescent heather, only now filling in. Removing this plot from the analysis, disturbance range drops to 0-15%, and a median of 2% again.

U4 grassland can have small areas of disturbance (0-10%, median 0%) with a closed sward (a more open sward, dominated by small tussocks of grasses belong to the related grassland community: U1 *Festuca ovina-Agrostis capillaris-Rumex acetosella* Sheep's Fescue-Common Bent-Sheep's Sorrel grassland which are found elsewhere on site.)

Table 14: Broad habitats and the range and median amount of bare ground present withinquadrats.

Broad Habitat	Range	Median
Heathland (H9)	0-50%	2%
Mesotrophic Grassland (MG1)	0-4%	2%
Mesotrophic Grassland (MG6/7)	0-25%	1%
Open Vegetation (OV25)	0-10%	2%
Acid Grassland (U4)	0-10%	0%
Woodland (W10)	1-80%	10%
Woodland (W16)	0-2%	0%
Woodland (W25)	90%	90%

The presence and proportion of trampling by humans either by foot or bikes is reported in Table 16, as well as the presence of any littering. As anticipated, the most heavily impacted sites from bike tracks were the coarser grasslands (MG6/7), which were typically either forming parts of the footpaths/tracks near carparks and across the sites, or adjacent to footpaths. Heavy trampling was also found on acid grassland (1 plot untrampled, 2 plots with moderate and two with heavy trampling).

Heathland had the least impacts (12 out of 13 quadrats had no trampling; 1 quadrat had moderate trampling), this is partly due to site selection (deliberately choosing 'better' ecological areas), but also represented the general condition of these areas being less disturbed.

Summary of disturbance at Cannock Chase plots

It was clear that those habitats identified as Mesotrophic Grassland (MG6/7) had the most dog fouling, trampling and other disturbance.

Partly due to the design of the study, those habitats which were of more ecological importance generally had less impact from humans and associated animals. But this also reflected the distance away from car parks and footpaths and intentional/accidental impacts.

It was clear that nearer to the car parks were the highest impacts of trampling.

	Bike tracks			Trampling		No of	
Broad Habitat	(no of					Litter	nlote
	plots)	None	Low	Moderate	Heavy		μιστο
Heathland (H9)	None	12	-	1	-	1 (old)	13
Mesotrophic Grassland (MG1)	Yes (1)	1	1	2	-	-	4
Mesotrophic Grassland (MG6/7)	Yes (6)	-	1	6	2	-	9
Open Vegetation (OV25)	No	-	-	-	1	-	1
Acid Grassland (U4)	Yes (1)	1	-	2	2	-	5
Woodland (W10)	No	1	-	1	1	Den built nearby	3
Woodland (W16)	No	2	-	-	-	-	2
Woodland (W25)	No	2	-	-	-	1	2

Table 15: Presence of bike tracks, amount of trampling, and presence of litter from different habitats

Figure 16: An illustration of typical distribution of dogs fouling across a given area based on the surveyor's experience of walking across these areas during the survey. Red areas are the main tracks/footpath leading from the car park (grey). The white area was not surveyed, but dog fouling was visible in some of these areas.

Traffic light colouring used (red highest amounts of dog fouling seen to green least or no dog fouling present). Typically, along the tracks and near car parks high quantities of dog fouling occurred. Either side of the main paths (yellow) vegetation indicating additional nutrients was visible for between 2-5m. Further away (green) areas of the good quality habitat occurred, but even here scattered dog fouling occurred, either as visible faeces or plants indicative of localised nutrient enrichment in the past (urine/faeces), from free roaming dogs which also impacts ground nesting birds.

The impacts of dog fouling and trampling (human and canine) are drivers for vegetation to change to more mesotrophic grassland (MG6/7), away from better quality habitats typical of Cannock Chase.

Future analysis

It is hoped that the study can be repeated (every 2-5 years) and the data collected can be compared to help show trends in vegetation distribution and occurrences.

The following changes should be detectable with the survey methods detailed above:

- Change in species present within each plot, and within each quadrat within these plots.
- Changes against plots that are near to or include public car parks against those areas which are near to where parking has ceased. It is hoped that if management is correct ruderal habitats will decrease and acid grassland/heathland habitats increase.
- Decline in eutrophic indicator species vis-à-vis increase in lower nutrient status species.
- Decline in disturbance (ruderal) species vis-à-vis increase in species that require undisturbed soils.
- Change in vegetation height.
- Changes in visual amounts of bare soil and trampling area (% of area).
- Changes in human pressures (trampling, fouling, litter, burning).

It may be that future studies identify a reduction in species found especially along edge habitats where trampling (but not eutrophication) has been an issue previously. These edge habitats can be more herb rich and species such as Harebell *Campanula rotundifolia*, Tormentil *Potentilla erecta* and Mouse-ear Hawkweed *Pilosella officinarum* are more apparent than when hidden and in lower cover values under denser heathland. These would apparently indicate a negative change due to lack of trampling, but in fact are more associated with the need to vary the age diversity of the heathland and continue maintaining short acid-grassland, through conservation management rather than pedestrian activity.

Future monitoring

This survey could form the baseline of a future monitoring scheme to assess how the landscape changes with the change of use of these areas. What needs to be considered for an effective monitoring scheme is suitable targets and actions should any of the parameters not be met.

Examples include:

- Bare ground
 - Monitor Increase/decrease due to trampling from cyclists/pedestrians.
 - $\circ~$ What amount of bare ground is undesirable? (JNCC (2009) recommend not more than 10%).
 - What actions can be put in place to reduce impact? It could be as little as putting up signs, allowing scrub/brash to block/divert paths to more punitive fines or active targeting of locations/individuals.
- **Reduction in dwarf shrub cover.** Target set at between 25-90% cover with European Gorse at < 25%. If the gorse increases, then a management action needs to take place to reduce the amount to a predetermined level. If the cover reduces then suitable management needs to be implemented.
- Reduction in dog fouling along tracks and adjacent to car park. Regular checks, with enforcement to ensure collection of dog faeces to reduce further eutrophication. Encourage dog owners to keep dogs on leads to prevent fouling away from tracks (which is less likely to be collected). Addition of signage to explain reasons for keeping dogs on leads (additional to ground nesting birds).
- Areas of ecological significance. Reduce the overall nutrient enrichment (dog faeces and urine) by banning access to these areas by dogs. Even responsible dog owners cannot prevent eutrophication from dog urine.

Conclusion

Botanical Survey:

A total of 1006 botanical and bryological records were made for 113 different taxa (90 species of vascular plants, 20 bryophytes and 3 lichens). None of these plants belong on Schedule 8 (protected species) or 9 (invasive non-native species).

Habitats found:

The dominant habitats identified during the current survey belonged to grasslands, heathlands and woodlands. In many cases the sites surveyed showed a neat gradient of habitats from coarse mesotrophic grassland, through acid grassland to heathland. The latter two are of a greater ecological value. An NVC survey identified eight main communities, ranging from three types of mesotrophic grassland (MG1, MG6 and MG7) to acid grassland (U4, U20), lowland heathland (H9) and woodland (W10, W16 and W25).

The most species rich of these habitats was the MG1 mesotrophic grassland, although many of these species were 'weedy'. By contrast acid grassland and heathland had fewer species present but they were of higher ecological value. In contrast was the Bracken underscrub (W25) in which Bracken often formed a monoculture.

National Vegetation Communities

NVC surveys identified ten communities within five broad habitats: heathland (H9), mesotrophic grassland (MG1, MG6 and MG7), open vegetation (OV25), acid grassland (U4, U20), Woodland (W10, W16 and W25).

Ecologically the most important are H9, U4, W10, W16; of lesser importance is MG1. Of very low ecological importance are MG6, MG7 and OV25.

Large stands of good quality heathland (H9) were identified, but when crossed by a track, they are typically bordered by communities indicating some improvement (MG1, OV25). By the car park, and areas with high trampling and dog fouling then MG6 and MG7 grasslands predominate.

Various thoughts have been given on how these communities interact with associated management/nutrients. Key is the amount of nutrients from a mixture of sources which are in places transitioning desirable habitats to less desirable habitats.

Vegetation heights

Unmanaged areas of mesotrophic grassland (MG1) typically were the tallest grassland. Acid grassland had a higher median height (10cm) than either of the mesotrophic grasslands (MG6, MG7 – 6.8cm), but its range was much lower 2-25cm, compared to 0-66cm. Heathland (unless recently managed/cut) had a median of 22cm, although its height could exceed 100cm when flowering stems of Purple Moor-grass skewed the measurements. Vegetation height was also heavily influenced by both the plant communities present and current management/trampling.

Ellenberg Indicator Values

Only minor differences between light and moisture across the plots were identified. Reaction (pH) varied depending on the habitat, in part due to the underlying soils, with heathlands having the lowest EIVs and mesotrophic grasslands highest.

Nutrients were of particular interest, again with a trend of lower EIVs in the heathland compared to mesotrophic grasslands.

CSR Values

A clear distinction between mesotrophic grasslands, acid grasslands and heathlands plots are shown. As expected, more Stress and Competitor tolerant plants were found within the heathland communities, with very low ruderal values (suggesting low disturbance). Mesotrophic grassland was closer to the Ruderal values with less Stress tolerant values. Acid grasslands were intermediate between heathlands and mesotrophic grasslands as expected.

The data collected will be of use when compared to any future surveys.

Disturbance

Dog fouling: The areas with the highest incidence of dog fouling could be found in Mesotrophic grassland (particularly the MG6/7 communities), with heathlands typically lower (fouling absent from 9 of 13 plots). Acid grassland, (which is of a lower sward height and lacking the woody subshrubs) had higher amounts of dog fouling than much of the heathland (3 plots with a low score, 1 each of medium and high scores). Woodlands typically were fairly clear of dog fouling, perhaps as they are further off the main paths. There are additional concerns about ectoparasite treatment and its impact on invertebrate fauna (and potentially other organisms).

Trampling across plots was reviewed, this was similar to the amount of dog fouling with the highest being present in mesotrophic grassland (moderate 6, high 3), one acid grassland plot was also considered highly trampled. Heathlands were mixed, with 10 plots undisturbed (moderate 2, high 1). Woodlands were again relatively undisturbed.

Bike tracks and heavy trampling as expected was more evident nearer to car parks, then the pressures radiated out along footpaths and tracks, generally reducing the further away from car parks (although bottle necks did cause some excessive trampling elsewhere).

Bare ground (sometimes natural, but mostly caused by excessive wear from pedestrians and cyclists), was highest in woodland (likely natural), open vegetation (2% - likely shading from coarse 'weedy' vegetation due to excessive nutrients), heathland (0-50% - but much of this was either natural or caused by recent heather management), mesotrophic grassland (0-25% - typically caused by scuffing – otherwise a naturally tight sward).

Conclusion

It is clear that humans and their dogs are having a negative impact on vegetation at Cannock Chase.

Partly due to the design of the study, those habitats which were of more ecological importance generally had less impacts from humans and associated animals. But this also reflected the distance away from car parks and footpaths and intentional/accidental impacts.

Higher amounts of disturbance from pedestrians and bikes are present near to car parks, spreading out along tracks. Typically, it would seem that humans are mostly remaining on the paths, although some desire lines are present where they cut corners.

It was clear that those habitats identified as Mesotrophic Grassland (MG6/7) had the most dog fouling, trampling and other disturbance.

Of more concern is the presence and proportion of dog faeces (and in turn dog urine), which in some areas, particularly car parks and adjacent areas, can be excessive. Evidence of past faeces/urine actions can be seen in good quality habitats where dogs have been allowed to roam freely (Figure 16). Preventing dogs from roaming freely off leads would assist both with ground nesting birds and in preventing further local eutrophication of heathland.

References

- ANDERSON, KL.; CASEY, RA.; COOPER, B.; UPJOHN, MM. and CHRISTLEY, RM. 2023. National Dog Survey: Describing UK Dog and Ownership Demographics. Animals (Basel). 2023 Mar 16; 13(6):1072. <u>National Dog Survey: Describing UK Dog and Ownership Demographics - PMC</u> Accessed online 13th December 2024.
- ATHERTON, I.; BOSANQUET, S. and LAWLEY, M. 2010. *Mosses and Liverworts of Britain and Ireland: a field guide*. British Bryological Society, Plymouth.
- BOTANICAL SOCIETY OF BRITAIN AND IRELAND. 2024a. *Distribution Database*. <u>https://database.bsbi.org/</u> Accessed 29th October 2024.
- BVA, BSAVA and BVZS. 2021. BVA, BSAVA and BVZS policy position on responsible use of parasiticides for cats and dogs. <u>bva-bsava-and-bvzs-policy-position-on-responsible-use-of-parasiticides-for-cats-and-dogs.pdf</u> Accessed 13th December 2024.
- CANNOCK CHASE NATIONAL LANDSCAPE. 2024a. Map of Cannock Chase AONB. <u>https://www.cannock-chase.co.uk/walking-and-exploring/aonb-map/</u> Accessed 30th October 2024.
- CANNOCK CHASE NATIONAL LANDSCAPE. 2024b. Cannock Chase National Landscape Partnership: Facts and Figures. <u>https://www.cannock-chase.co.uk/about-cannock-chase/facts-and-figures/</u> Accessed 19th November 2024.
- CLARKE, R., LILEY, D., UNDERHILL-DAY, J. and ROSE, R. 2005. *Visitor access patterns on the Dorset heathlands*. English Nature Research Reports, No. 683. English Nature, Peterborough.
- DEPARTMENT FOR ENVIRONMENT, FOOD AND RURAL AFFAIRS. 2024. *Magic Map*. <u>https://magic.defra.gov.uk/MagicMap.aspx?startTopic=Designations&activelayer=sssiInde</u> <u>x&query=HYPERLINK%3D%271004497%27</u> Accessed 29th October 2024.
- GRIME, J.P.; HODGSON, J.G. and HUNT, R. 1996. *Comparative Plant Ecology: A functional approach to common British species*. Chapman and Hall, London.
- HILL, D., FASHAM, M. TUCKER, G., SHEWRY, M. and SHAW, P. 2005. *Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring*. Cambridge University Press, Cambridge.
- HILL, M.O., PRESTON, C.D., and ROY, D.B. 2004. '*PLANTATT: Attributes of British and Irish Plants: Status, size, life history, geography and habitats'*. Biological Records Centre, NERC Centre for Ecology and Hydrology.
- HUBBARD, C.E. 1992. 3rd Edition. *Grasses: A guide to their Structure, Identification, Uses and Distribution in the British Isles.* Penguin, London.
- JOINT NATURE CONSERVANCY COUNCIL. 2009. *Common Standards Monitoring Guidance for Lowland Heathland*. JNCC, Peterborough.
- JOINT NATURE CONSERVANCY COUNCIL. 2024. Cannock Chase: SAC. https://sac.jncc.gov.uk/site/UK0030107 Accessed 29th October 2024.
- LILEY, D., UNDERHILL-DAY, J. and SQUIRRELL, N. 2006. *Dog-walkers on the Dorset Heaths: Analysis of questionnaire data collected by wardens on Dorset's Urban Heaths*. English Nature Repot: 713. English Nature, Peterborough.
- MAVIS. 2015. *Modular Analysis of Vegetation Information System (MAVIS) version 2.* Centre for Ecology and Hydrology, Lancaster.

- NATURAL ENGLAND. 2016. Long Term Monitoring Network Vegetation Protocol (LTMN001). http://publications.naturalengland.org.uk/publication/6331137473904640 Accessed 19th September 2018
- NATURAL ENGLAND. 2024a. National Character Area Profiles: Cannock Chase and Cank Wood. <u>https://nationalcharacterareas.co.uk/Cannock-Chase-and-Cank-Wood/</u> Accessed 29th October 2024.
- NATURAL ENGLAND. 2024b. SSSI Citation for Cannock Chase. <u>https://designatedsites.naturalengland.org.uk/PDFsForWeb/Citation/1004497.pdf</u> Accessed 29th October 2025.
- PERKINS, R. and GOULSON, D. 2023. To flea or not to flea: survey of UK companion animal ectoparasiticide usage and activities affecting pathways to the environment. PeerJ 11:e15561 <u>https://doi.org/10.7717/peerj.15561</u> Accessed 13th December 2024.
- PFMA. 2022. *Pet Population*. 2022. <u>https://www.pfma.org.uk/pet-population-2022</u> Accessed 13th December 2024.
- POLAND, J. and CLEMENT, E. 2020. *The Vegetative Key to the British Flora*. 2nd edition. Private.
- RICH T.C.G. and JERMY A.C. 1998. *Plant Crib*. Botanical Society of the British Isles, London.
- RODWELL, J.S. 1998. *British Plant Communities 1: Woodlands and scrub.* Cambridge University Press. Cambridge
- RODWELL, J.S. 1998. *British Plant Communities 2: Mires and heath.* Cambridge University Press. Cambridge.
- RODWELL, J.S. 1998. *British Plant Communities 3: Grasslands and montane communities.* Cambridge University Press. Cambridge
- RODWELL, J.S. 1998. *British Plant Communities 4: Aquatic communities, swamps and tallherb fens.* Cambridge University Press. Cambridge
- RODWELL, J.S. 2000. *British Plant Communities 5: Maritime communities and vegetation of open habitats.* Cambridge University Press. Cambridge
- RODWELL, J. 2006. *National Vegetation Classification: Users' Handbook*. JNCC, Peterborough.
- STACE, C.A. 1999. *Field Flora of the British Isles*. 2nd Ed. Cambridge University Press, Cambridge.
- STACE, C.A. 2019. *New Flora of the British Isles.* 4th Ed. S&M Floristics.

Appendices

Appendix 1: Species list from all plots.

Vascular Plants

Scientific Name	Common Name		
Agrostis capillaris	Common Bent		
Agrostis stolonifera	Creeping Bent		
Anthoxanthum odoratum	Sweet Vernal-grass		
Aphanes arvensis	Parsley-piert		
Arrhenatherum elatius	False Oat-grass		
Avenella flexuosa (Syn. Deschampsia flexuosa)	Wavy Hair-grass		
Bellis perennis	Daisy		
Betula pendula	Siver Birch		
Betula pubescens Downy Birch			
Bromus hordeaceus	Soft-brome		
Calluna vulgaris	Heather		
Carex hirta	Hairy Sedge		
Carex pilulifera	Pill Sedge		
Cerastium fontanum	Common Mouse-ear		
Chamaenerion angustifolium	Rosebay Willowherb		
Cirsium arvense	Creeping Thistle		
Cirsium vulgare	Spear Thistle		
Crataegus monogyna	Hawthorn		
Crepis capillaris	Smooth Hawk's-beard		
Cynosurus cristatus	Crested Dog's-tail		
Dactylis glomerata	Cock's-foot		
Danthonia decumbens	Heath-grass		
Digitalis purpurea Foxglove			
Dryopteris dilatata	Broad Buckler-fern		
Dryopteris filix-mas	Male-fern		
Elymus repens	Common Couch		
Empetrum nigrum	Crowberry		
Epilobium montanum	Broad-leaved Willowherb		
Epilobium parviflorum	Hoary Willowherb		
Erica cinerea	Bell Heather		
Erica tetralix	Cross-leaved Heath		
Fagus sylvatica	Beech		
Festuca ovina	Sheep's-fescue		
Festuca rubra	Red Fescue		
Galium aparine	Cleavers		
Galium saxatile	Heath Bedstraw		
Geum urbanum	Wood Avens		
Hedera helix	Common Ivy		
Holcus lanatus	Yorkshire-fog		
Holcus mollis	Creeping Soft-grass		

Hypochaeris radicata	Cat's-ear
Jacobaea vulgaris (Syn. Senecio jacobaea)	Common Ragwort
Juncus bufonius sens. lat.	Toad Rush
Juncus effusus	Soft Rush
Ranunculus sardous	Hairy Buttercup
Juncus tenuis	Slender Rush
Lathyrus pratensis	Meadow Vetchling
Linaria vulgaris	Common Toadflax
Lolium perenne	Perennial Rye-grass
Lotus corniculatus	Common Bird's-foot-trefoil
Luzula campestris	Field Wood-rush
Luzula multiflora	Heath Wood-rush
Matricaria discoidea	Pineappleweed
Molinia caerulea	Purple Moor-grass
Nardus stricta	Mat-grass
Pinus sylvestris	Scots Pine
Plantago coronopus	Buck's-horn Plantain
Plantago lanceolata	Ribwort Plantain
Plantago major	Greater Plantain
Poa annua	Annual Meadow-grass
Poa humilis	Spreading Meadow-grass
Poa pratensis	Smooth-stalked Meadow-grass
Poa trivialis	Rough-stalked Meadow-grass
Polygonum aviculare	Knotgrass
Potentilla erecta	Tormentil
Prunus sp. (seedling)	A cherry/blackthorn
Pteridium aquilinum	Bracken
Quercus robur	Pedunculate Oak
Ranunculus repens	Creeping Buttercup
Rubus fruticosus agg.	a Bramble
Rumex acetosa	Common Sorrel
Rumex acetosella	Sheep's Sorrel
Rumex obtusifolius	Broad-leaved Dock
Sagina procumbens	Procumbent Pearlwort
Scorzoneroides autumnalis (Syn. Leontodon autumnalis)	Autumn Hawkbit
Sorbus aucuparia	Rowan
Stellaria graminea	Lesser Stitchwort
Taraxacum officinale agg.	Dandelion
Trifolium dubium	Lesser Trefoil
Trifolium repens	White Clover
Trisetum flavescens	Yellow Oat-grass
Ulex europaeus	Gorse
Urtica dioica	Common Nettle
Vaccinium myrtillus	Bilberry
Vaccinium vitis-idaea	Cowberry
Veronica chamaedrys	Germander Speedwell
Veronica serpyllifolia	Thyme-leaved Speedwell

Vicia cracca	Tufted Vetch
Vicia sepium	Bush Vetch
Vulpia bromoides	Squirrel-tail Fescue

Bryophytes

Atrichum undulatum
Brachythecium albicans
Brachythecium rutabulum
Bryum sp
Calliergonella cuspidata (Syn. Calliergon cuspidata)
Campylopus introflexus
Dicranella heteromalla
Dicranum scoparium
Kindbergia praelonga (Syn. Eurhynchium praelongum)
Hylocomium splendens
Hypnum cupressiforme sl.
Hypnum jutlandicum
Hypnum sp.
Lophocolea bidentata sl.
Pleurozium schreberi
Polytrichum commune
Polytrichum piliferum
Pseudoscleropodium purum (Syn. Scleropodium
purum)
Rhytidiadelphus loreus
Rhytidiadelphus squarrosus

Lichens

Cladonia chlorophaea s.l.		
Cladonia impexa		
Cladonia portentosa		

Site	Quadrat	Grid	Grid reference as			Vegetatio	n Heig		Slana	Acrost	Altitudo	
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SK00307										
	1Ai	14802	No	5	7	13	6	10	8.2	-	-	167
		SK00304										
	1Aii	14802	No	8	5	6	7	6	6.4	-	-	167
		SK00312										
	1Aiii	14807	No	7	6	8	5	8	6.8	-	-	167
		SK00319										
	1Aiv	14805	No	4	8	4	4	5	5	-	-	167
		SK00325										
	1Av	14803	No	3	9	6	2	5	5	-	-	167
		SK00235										
	1Bi	14816	Yes	13	14	12	7	8	10.8	1	45	167
		SK00235										
	1Bii	14816	No	22	10	8	8	12	12	2	45	167
Duffields		SK00237										
Dumotuo	1Biii	14820	No	25	8	9	19	18	15.8	-	-	167
		SK00234										
	1Biv	14825	No	17	11	14	15	9	13.2	-	-	167
		SK00238										
	1Bv	14825	No	13	13	15	10	15	13.2	-	-	167
		SK00178										
	1Ci	14824	No	17	13	15	21	19	17	4	45	171
		SK00186								_		
	1Cii	14824	No	35	23	10	23	23	22.8	3	50	170
		SK00193										
	1011	14828	No	58	46	36	18	32	38	-	-	169
		SK00189										470
	1Civ	14820	No	33	36	30	49	51	39.8	2	76	170
		SK00195										1 4 4 4 4
ļ	1Cv	14823	No	12	12	19	30	13	17.2	3	45	169
					Ve	egetation F	Slope	Aspect	Altitude			

Appendix 2: Quadrat locations, abiotic notes and vegetation heights.

Arvensis Ecology: Cannock Chase Vegetation survey Page 65

Site	Quadrat	Grid	Grid reference as			Contro	CW/	SE.	Maan			
Name	code	Reference	Feno marker	INVV	INE	Centre	310	3E	Mean			
	24i	SJ99818										
	ZAI	15656	No	7	6	5	7	9	6.8	-	-	199
	2411	SJ99821										
	ZAII	15660	No	13	13	12	10	22	14	-	-	199
	24111	SJ99825										
	28111	15652	No	8	10	13	10	14	11	-	-	199
	2 Aiv	SJ99828										
	ZAIV	15646	No	2	0	3	5	6	3.2	-	-	199
	241	SJ99824										
	ZAV	15654	No	7	2	7	8	5	5.8	-	-	199
	2Bi	SJ99840										
	201	15557	No	2	9	21	8	24	12.8	4	240	194
	2Bii	SJ99840					6 5					
	2011	15555	No	6	20	6	6	5	8.6	4	230	194
Flint	2Biii	SJ99841										
Fields		15543	No	26	7	10	7	11	12.2	-	-	194
	2Biv	SJ99839										
	2010	15538	No	6	4	5	4	10	5.8	1	240	193
	2Bv	SJ99835										
	200	15535	No	3	5	5	4	12	5.8	4	234	193
	2Ci	SJ99848										
	201	15509	Yes	33	47	48	28	46	40.4	10	230	191
	2Cii	SJ99849										
	2011	15503	No	28	35	26	14	46	29.8	9	290	191
	2011	SJ99856										
	2011	15492	No	25	19	25	22	>100	22.8	3	270	191
	2Civ	SJ99840										
2Civ 2Cv	2010	15495	No	19	10	18	16	15	15.6	5	308	190
	2Cv	SJ99842										
	200	15502	No	37	35	17	24	17	26	9	226	191

Site	Quadrat	Grid	Grid reference as			Vegetatio	n Heig		Slana	Acrost	Altitude	
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
	245	SJ99533										
	3AI	15413	No	2	2	7	7	9	5.4	1	0	184
	24::	SJ99532										
	3AII	15415	No	4	5	8	4	2	4.6	-	-	184
	0.4.;;;	SJ99528										
	3AIII	15411	No	9	7	7	6	5	6.8	-	-	184
		SJ99527										
	3AIV	15417	No	7	4	7	7	9	6.8	-	-	184
	244	SJ99518										
	3AV	15419	No	4	6	4	5	4	4.6	-	-	184
	3Bi 3Bii	SJ99589										
		15421	No	18	13	9	10	7	11.4	-	-	183
	2011	SJ99598										
	JDII	15423	No	15	7	16	7	8	10.6	-	-	183
Brindley	3Biii	SJ99599										
Bottom		15421	No	15	15	8	11	11	12	-	-	183
	3Biv	SJ99602										
	3010	15421	No	10	11	11	14	6	10.4	-	-	183
	3Bv	SJ99605										
	550	15419	No	7	11	16	14	13	12.2	-	-	183
	3Ci	SJ 99577										
		15456	Yes	13	31	20	6	22	18.4	-	-	184
	3Cii	SJ99574										
-		15460	No	7	11	13	40	24	19	-	-	184
	3Ciii	SJ99565										
		15462	No	66	60	34	23	53	47.2	-	-	184
	3Civ	SJ99584										
		15454	No	23	18	16	54	10	24.2	-	-	184
	3Cv	SJ99577										
	001	15454	No	25	20	9	24	20	19.6	-	-	184

Site	Quadrat	Grid	Grid reference as			Vegetatio	n Heig		Clana	Acrest	Altitude	
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
	441	SJ99405										
	441	16184	Yes	10	25	13	29	13	18	-	-	204
	4 4 11	SJ99411										
	4411	16195	No	7	12	8	10	8	9	-	-	204
	4 4 111	SJ99411										
	4AIII	16200	No	8	26	7	10	10	12.2	-	-	204
	4 4 10 /	SJ99416										
	4AIV	16198	No	8	9	7	9	8	8.2	-	-	204
	400	SJ99412										
	4Av 4Bi	16190	No	7	6	6	8	12	7.8	-	-	204
	4Ri	SJ99377										
	401	16151	Yes	42	50	6	47	58	40.6	-	-	203
	4Bii	SJ99381										
	401	16159	No	11	19	12	20	16	15.6	-	-	203
White	∕/Biii	SJ99384										
House	4BIII	16153	No	41	41	12	19	7	24	-	-	203
	∕/Biv	SJ99385										
	4010	16151	No	12	10	24	7	33	17.2	-	-	203
	/Bv	SJ99389										
	401	16148	No	34	17	32	16	19	23.6	-	-	203
	4Ci	SJ99319										
		16226	No	11	11	32	31	33	23.6	-	-	203
	4Cii	SJ99324										
		16232	No	20	64	23	26	15	29.6	-	-	203
	4Ciii	SJ99322										
		16225	No	15	44	34	26	18	27.4	-	-	203
	4Civ	SJ99320										
		16224	No	16	29	17	13	27	20.4	-	-	203
	4Cv	SJ99312										
		16228	No	66	63	41	16	37	44.6	-	-	202

Site Name	Quadrat	Grid	Grid reference as			Vegetatio	n Heig	ht		Slope	Acrost	Altitudo
Sile Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspeci	Alliluue
	5 A i	SK00098										
	34	16872	No	4	3	4	4	3	3.6	-	-	206
	5 A ii	SK00096										
	541	16877	No	5	5	6	3	3	4.4	-	-	205
	5 A iii	SK00089										
	5411	16872	No	8	3	4	11	4	6	-	-	205
	5Aiv	SK00091										
	5410	16885	No	5	5	6	5	6	5.4	-	-	205
	5 4 v	SK00088										
	540	16888	No	9	6	9	9	6	7.8	-	-	205
	5Bi	SK00128										
		16964	No	55	9	41	48	12	33	-	-	204
	5Bii	SK00130						12 3 31 25				
		16962	No	3	27	34	33 3	31	25.6	-	-	204
Penkridge	5Biii	SK00132										
Bank		16964	No	18	40	44	13	58	34.6	-	-	204
	5Biv	SK00137										
	-	16956	No	23	60	59	33	22	39.4	-	-	204
	5Bv	SK00132										
		16953	NO	21	15	45	40	22	28.6	-	-	204
	5Ci	SK00092		47	10	10		10	47.0			004
		16946	NO	1/	16	10	26	19	17.6	-	-	204
	5Cii	SK00092	No	00		20	~~	07	00.4			004
		16944	INO	23	9	30	28	27	23.4	-	-	204
	5Ciii	5KUUU9U	No	20	05	22	10	10	01			20.4
		10921	INO	20	25	23	18	19	21	-	-	204
	5Civ	5KUUU88	No	0	10	11	17	26	10.0			204
		10301	INU	ŏ	12	11	1/	30	10.8	-	-	204
	5Cv	5KUUU95	No	10	04	04	11	20	10			204
		10902	NO	10	24	24	11	20	19	-	-	204

Site	Quadrat	Grid	Grid reference as			Vegetatio		Clana	Acrest	Altitude		
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SJ98228										
	6Ai	15869	No	5	13	9	4	14	9	-	-	221
		SJ98223										
	6Aii	15871	No	6	13	8	13	16	11.2	-	-	221
		SJ98226										
	6Aiii	15878	No	10	8	10	5	7	8	-	-	221
		SJ98224										
	6Aiv	15883	No	9	11	4	4	9	7.4	-	-	221
		SJ98224										
	6Av	15889	No	6	3	2	4	2	3.4	-	-	221
		SJ98213										
	6Bi	15942	Yes	19	29	6	19	19	18.4	-	-	221
		SJ98214										
	6Bii	15949	No	21	15	25	48	22	26.2	-	-	221
Acnone		SJ98210										
Ashella	6Biii	15951	No	42	47	32	30	29	36	-	-	222
		SJ98206										
	6Biv	15956	No	17	25	28	15	14	19.8	-	-	222
		SJ98203										
	6Bv	15960	No	30	19	46	51	33	35.8	-	-	222
		SJ98226										
	6Ci	15963	No	21	26	21	40	19	25.4	-	-	221
		SJ98223										
	6Cii	15968	No	23	45	33	37	25	32.6	-	-	221
		SJ98225										
	6Ciii	15971	No	24	16	23	23	31	23.4	-	-	221
		SJ98231										
	6Civ	15969	No	17	17	20	16	24	18.8	-	-	221
		SJ98232										
	6Cv	15964	No	22	25	12	26	16	20.2	-	-	221

Site	Quadrat	Grid	Grid reference as			Vegetatio	n Heig	ht		Slana	Acrest	Altitudo
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SJ98062										
	7Ai	18183	No	7	5	9	5	5	6.2	-	-	192
		SJ98052										
	7Aii	18188	No	2	2	2	3	3	2.4	-	-	192
		SJ98051										
	7Aiii	18195	No	2	2	2	2	2	2	-	-	192
		SJ98060										
	7Aiv	18195	No	4	4	4	7	3	4.4	2	40	192
		SJ98064										
	7Av	18193	No	2	4	2	2	5	3	-	-	192
		SJ98081										
	7Bi	18174	No	17	13	11	8	30	15.8	-	-	192
		SJ98080										
	7Bii	18179	No	19	5	>100	12	12	12	-	-	192
Glacial		SJ98087										
Boulder	7Biii	18179	No	8	4	22	4	14	10.4	-	-	192
		SJ98090										
	7Biv	18184	No	10	15	>100	13	9	11.8	-	-	192
		SJ98097										
	7Bv	18185	No	9	14	53	5	8	17.8	-	-	192
		SJ98119										
	7Ci	18172	Yes	14	5	15	11	11	11.2	-	-	192
		SJ98120										
	7Cii	18177	No	19	14	8	7	10	11.6	-	-	192
-		SJ98121										
	7Ciii	18181	No	12	13	13	10	17	13	-	-	192
		SJ98127										
	7Civ	18181	No	21	13	15	12	12	14.6	-	-	192
		SJ98134										
	7Cv	18183	No	24	18	20	17	14	18.6	-	-	192

Site	Quadrat	Grid	Grid reference as			Vegetatio		Clana	Asset	Altitude		
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SJ98035										
	8Ai	19058	No	7	3	7	11	9	7.4	-	-	184
		SJ98031										
	8Aii	19063	No	2	2	6	7	6	4.6	-	-	184
		SJ98025										
	8Aiii	19072	No	6	4	4	5	4	4.6	-	-	183
		SJ98021										
	8Aiv	19071	No	6	3	5	6	4	4.8	-	-	183
		SJ98021										
	8Av	19068	No	7	9	5	4	3	5.6	-	-	183
		SJ98090										
	8Bi	19020	Yes	11	25	5	4	6	10.2	1	140	183
		SJ98090										
	8Bii	19025	No	70	44	14	14	61	40.6	1	230	184
Coppice		SJ98095										
Hill	8Biii	19021	No	73	56	38	7	47	44.2	-	-	183
		SJ98096										
	8Biv	19017	No	8	>100	9	10	>100	9	-	-	183
		SJ98093										
	8Bv	19018	No	6	35	34	13	11	19.8	-	-	183
		SJ98168										
	8Ci	19035	No	33	40	40	30	40	36.6	-	-	184
		SJ98172										
	8Cii	19032	No	34	10	38	42	11	27	-	-	184
-		SJ98169										
	8Ciii	19028	No	41	16	9	38	10	22.8	-	-	184
		SJ98166										
	8Civ	19029	No	23	33	31	41	28	31.2	-	-	184
		SJ98161										
	8Cv	19030	No	46	40	52	56	54	49.6	5	180	184
Site	Quadrat	Grid	Grid reference as	ce as Vegetation Height er NW NE Centre SW SE Mea						Clana	Acrest	Altitudo
--------	---------	-----------	-------------------	--	----	--------	----	----	------	-------	--------	----------
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SJ97457										
	9Ai	20808	No	14	36	46	5	36	27.4	-	-	108
		SJ97453										
	9Aii	20806	No	9	8	9	7	9	8.4	1	346	108
		SJ97457										
	9Aiii	20802	No	9	7	7	9	10	8.4	-	-	108
		SJ97454										
	9Aiv	20797	No	12	9	19	19	13	14.4	-	-	108
		SJ97454										
	9Av	20794	No	10	48	16	14	13	20.2	-	-	108
		SJ97455										
	9Bi	20846	Yes	2	2	2	2	2	2	6	290	107
		SJ97449										
	9Bii	20853	No	2	2	2	2	2	2	8	294	106
Sister		SJ97454										
Dora	9Biii	20858	No	2	2	2	2	2	2	3	100	106
		SJ97459										
	9Biv	20856	No	2	2	2	2	2	2	3	306	107
		SJ97461										
	9Bv	20848	No	2	2	2	2	2	2	6	294	107
		SJ97446										
	9Ci	20893	No	7	5	14	8	13	9.4	4	304	102
		SJ97447										
	9Cii	20889	No	52	25	17	20	10	24.8	4	270	103
		SJ97449										
	9Ciii	20880	No	19	30	26	36	27	27.6	8	312	104
		SJ97447										
	9Civ	20877	No	32	28	13	14	22	21.8	-	-	104
		SJ97438										
	9Cv	20884	No	2	7	18	39	10	15.2	9	270	103

Site	Quadrat	Grid	Grid reference as	e as Vegetation Height Pr NW NE Centre SW SE						Slana	Acrost	Altitudo
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SJ98339										
	10Ai	20649	No	2	5	4	5	45	12.2	10	40	116
		SJ98341										
	10Aii	20650	No	6	5	8	6	44	13.8	8	40	116
		SJ98342										
	10Aiii	20650	No	2	2	6	9	19	7.6	10	40	116
		SJ98343										
	10Aiv	20650	No	3	6	6	4	4	4.6	5	62	116
		SJ98340										
	10Av	20652	No	16	62	24	17	8	25.4	10	80	116
		SJ98295										
	10Bi	20630	No	>100	>100	>100	>100	>100	-	6	90	121
		SJ98297										
	10Bii	20630	No	>100	>100	>100	>100	>100	-	6	90	121
Punch		SJ98299										
Bowl	10Biii	20629	No	>100	>100	>100	>100	>100	-	6	90	121
		SJ98302										
	10Biv	20629	No	>100	>100	>100	>100	>100	-	6	90	120
		SJ98303										
	10Bv	20630	No	>100	>100	>100	>100	>100	-	6	90	120
		SJ98290										
	10Ci	20604	No	>100	>100	>100	>100	>100	-	9	82	122
		SJ98290										
	10Cii	20605	No	>100	>100	>100	>100	>100	-	9	82	122
		SJ98290										
	10Ciii	20606	No	>100	>100	>100	>100	>100	-	9	82	122
		SJ98292						_				
	10Civ	20606	No	>100	>100	>100	>100	>100	-	9	82	121
		SJ98289										
	10Cv	20604	No	>100	>100	>100	>100	>100	-	9	82	122

Site	Quadrat	Grid	Grid reference as	as Vegetation Height NW NE Centre SW SE N						Slong	Acnost	Altitudo
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Alliluue
		SK00438										
	11Ai	20469	Yes	>100	>100	>100	>100	>100	-	1	30	86
		SK00451										
	11Aii	20479	No	>100	>100	>100	>100	>100	-	1	30	85
		SK00452										
	11Aiii	20481	No	>100	>100	>100	>100	>100	-	1	30	85
		SK00453										
	11Aiv	20483	No	>100	>100	>100	>100	>100	-	1	30	85
		SK00455										
	11Av	20485	No	>100	>100	>100	>100	>100	-	1	30	85
		SK00396										
	11Bi	20478	No	9	35	7	4	11	13.2	20	100	93
		SK00409										
_	11Bii	20473	No	30	17	65	3	15	26	18	114	88
Seven		SK00407										
Springs	11Biii	20471	No	4	9	5	11	9	7.6	21	98	88
		SK00405			_	_		_				
	11Biv	20469	No	4	5	5	4	5	4.6	16	110	89
	115	SK00398										
	11Bv	20470	No	6	8	8	4	2	5.6	20	110	91
	110	SK00395	N	. 100	. 100	. 100	. 100	. 100			110	
	11Ci	20480	NO	>100	>100	>100	>100	>100	-	20	116	93
	110::	SK00387	Maa	> 100	> 100	\$100	>100	> 100		00	110	0.4
	1101	20478	Yes	>100	>100	>100	>100	>100	-	20	116	94
	110:::	SK00391	Na	05	<u> </u>	05	F 4	4.5	07.0		110	05
		20482	INO	35	60	25	54	15	37.8	20	110	95
	11 Civ	3KUU383	No	>100	>100	>100	>100	>100		20	116	06
	TICN	20479	INU	>100	>100	>100	>100	>100	-	20	011	90
	11Cv	20479	No	>100	>100	>100	>100	>100	-	20	116	97

Site	Quadrat	Grid	Grid reference as		,	Vegetatio		Slong	Acrost	Altitudo		
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Alliluue
		SJ98118										
	12Ai	17536	No	4	6	7	3	7	5.4	-	-	188
		SJ98115										
	12Aii	17535	No	5	3	4	15	3	6	-	-	187
		SJ98111										
	12Aiii	17538	No	10	9	3	15	4	8.2	-	-	187
		SJ98117										
	12Aiv	17542	No	4	5	5	3	2	3.8	-	-	187
		SJ98119										
	12Av	17544	No	3	4	4	2	3	3.2	-	-	187
		SJ98117										
	12Bi	17510	No	29	40	35	16	26	29.2	-	-	188
		SJ98123										
Chase	12Bii	17508	No	29	18	29	35	26	27.4	-	-	188
Road		SJ98127										
Corner	12Biii	17503	No	10	8	15	19	23	15	-	-	188
Conner		SJ98127										
	12Biv	17500	No	8	8	18	28	21	16.6	1	20	188
		SJ98129										
	12Bv	17510	No	30	47	19	12	22	26	-	-	188
		SJ98115										
	12Ci	17467	No	40	34	38	30	33	35	-	-	190
		SJ98115										
	12Cii	17463	No	22	29	24	25	30	26	-	-	191
		SJ98112										
	12Ciii	17459	No	>100	>100	11	29	>100	20	-	-	191
		SJ98111										
	12Civ	17453	No	23	>100	8	10	50	22.8	-	-	191
		SJ98112										
	12Cv	17453	No	>100	>100	>100	>100	>100	-	-	-	191

Site	Quadrat	Grid	Grid reference as			Vegetatio	n Heig	ht		Clana	Acrest	Altitudo
Name	code	Reference	Feno marker	NW	NE	Centre	SW	SE	Mean	Stope	Aspect	Allilude
		SJ97978										
	13Ai	17198	No	7	12	10	7	9	9	-	-	202
		SJ97979										
	13Aii	17191	No	15	6	11	7	8	9.4	-	-	203
		SJ97983										
	13Aiii	17185	No	6	6	6	3	6	5.4	-	-	203
		SJ97984										
	13Aiv	17171	No	9	9	10	7	20	11	-	-	204
		SJ97981										
	13Av	17174	No	11	5	11	6	9	8.4	-	-	203
		SJ98000										
	13Bi	17195	No	6	5	35	5	5	11.2	-	-	203
		SJ98002										
	13Bii	17201	No	5	18	9	29	9	14	-	-	203
Anson's		SJ97997										
Bank	13Biii	17205	No	20	17	33	24	26	24	-	-	203
		SJ97997										
	13Biv	17212	No	10	13	26	5	5	11.8	-	-	202
		SJ98000										
	13Bv	17216	No	8	11	5	6	4	6.8	-	-	202
		SJ98011										
	13Ci	17196	Yes	35	60	48	28	24	39	-	-	203
		SJ98011										
	13Cii	17205	No	44	60	59	60	37	52	-	-	202
		SJ98017			_			_				
	13Ciii	17208	No	62	7	11	24	6	22	-	-	202
	400	SJ98020				50		4-	04.0			0.00
	13Civ	1/211	No	12	48	58	23	15	31.2	-	-	202
	100	SJ98016					45		54.0			
	13Cv	17198	No	23	69	55	45	64	51.2	-	-	203

Arvensis Ecology: Cannock Chase Vegetation survey Page 77

	Site Name	Duf	fields Car Pa	ark		Flint Fields		Br	indley Botto	m		White House	1
	Site number		1			2			3			4	
	NVC	MG7	U4	H9	MG7	U4	H9	MG7	U4	H9	MG7	H9	MG1
	Plot number	а	b	С	а	b	С	а	b	С	а	b	С
	Bike tracks	Yes	No	No	Yes	No	No	Yes	No	No	No	No	No
					Along paths								
cts	Vehicle tracks	-	-	-	-	-	-	-	-	-	-	-	-
ba	Trampling: None	-	-	Yes	-	Yes	Yes	-	-	Yes	-	Yes	-
ulu	Trampling: Low	-	-	-	-	-	-	-	-	-	-	-	-
mai	Trampling: Moderate	Yes	Yes	-	Yes	-	-	-	Yes	-	Yes	-	Yes
P	Trampling: Heavy	-	-	-	-	-	-	Yes	-	-	-	-	-
	Burning or other damag	-	-	-	-	-	-	-	-	-	Yes	Yes	-
	Human impacts notes	-	-	-	-	-	-	Footfall	-	-	Littering	Old litter	-
	Dog fouling: None	-	-	None	-	-	None	-	-	None	-	None	-
s	Dog fouling: Low	-	Yes		-	Yes		-	-	-	-	-	Yes
act	Dog fouling: moderate	-	-	-	Yes	-	-	-	-	-	Yes	-	-
m	Dog fouling: high	Yes	-	-	-	-	-	Yes	Yes	-	-	-	-
lali	Livestock present	-	-	-	-	-	-	-	-	-	-	-	-
nin	Deer grazing signs	Yes	-	Yes	-	Yes	-	-	Yes	-	-	-	-
◄	Deer dung present	Yes	-	Yes	-	-	Yes	-	Yes	Yes	-	-	Yes
	Animal impact notes	Horse dung	-	-	Mole hills	-	-	-	-	-	-	-	-
nce	None	-	-	None	-	-	None	-	-	None	-	None	-
Site urba	Moderate	Yes	Yes	-	Yes	Yes	-	-	Yes	-	-	-	-
dist	Heavy	-	-	-	-	-	-	Yes	-	-	Yes	-	-

Appendix 3: Human and animal impacts, overall plot disturbance.

	Site Name	Pe	enkridge Bar	ık		Aspens		G	lacial Bould	er	(Coppice Hill	
	Site number		5			6			7			8	
	NVC	MG7	H9	MG1	MG7	H9	H9	U4	H9	H9	MG7	H9	H9
	Plot number	а	b	C	а	b	с	а	b	С	а	b	С
	Bike tracks	Yes	No	Yes	Yes	No	No	Yes	No	No	Yes	No	No
		Along paths		On paths									
cts	Vehicle tracks	-	-	-	-	-	-	-	-	-	-	-	-
ba	Trampling: None	-	Yes	-	-	Yes	Yes	-	Yes	Yes	-	Yes	Yes
	Trampling: Low	-	-	Yes	Yes	-	-	-	-	-	-	-	-
ma	Trampling: Moderate	Yes	-	-	-	-	-	-	-	-	-	-	-
Ŧ	Trampling: Heavy	-	-	-	-	-	-	Yes	-	-	Yes	-	-
	Burning or other damag	-	-	-	Yes	-	-	-	-	-	-	-	-
	Human impacts notes	-	-	-	Litter	-	-	-	-	-	ths and track	-	-
	Dog fouling: None	-	None	-	-	-	None	-	-	None	-	-	None
s	Dog fouling: Low	-	-	-	-	-	-	-	Yes	-	-	Yes	-
act	Dog fouling: moderate	Yes	-	Yes	-	Yes	-	Yes	-	-	Yes	-	-
, du	Dog fouling: high	-	-	-	Yes	-	-	-	-	-	-	-	-
la	Livestock present	-	-	-	-	-	-	-	-	-	-	-	-
nir	Deer grazing signs	-	-	-	-	-	-	-	-	-	-	-	-
A	Deer dung present	-	Yes	-	Yes	-	-	Yes	-	-	Yes	-	-
	Animal impact notes	-	-	-	-	-	-	-	-	-	-	-	-
nce	None	-	None	None	-	-	None	-	-	None	-	None	None
Site	Moderate	Yes	-	-	Yes	Yes	-	-	Yes	-	Yes	-	-
dist	Heavy	-	-	-	-	-	-	Yes	-	Yes	-	-	-

	Site Name		Sister Dora			Punch Bowl			Seven Spring	s	Ch	ase Road Co	rner
	Site number		9			10			11			12	
	NVC	MG1	W10	H9	MG7	W25	W25	OV25	W10	W10	MG7	MG1	H9
	Plot number	а	b	С	а	b	с	а	b	С	а	b	С
	Bike tracks	No	No	No	No	No	No	No	No	No	No	No	No
cts	Vehicle tracks	-	-	-	-	-	-	-	-	-	-	-	-
ba	Trampling: None	-	-	-	-	Yes	Yes	-	-	Yes	-	Yes	Yes
	Trampling: Low	-	-	-	-	-	-	-	-	-	-	-	-
ma	Trampling: Moderate	Yes	Yes	Yes	Yes	-	-	-	Yes	-	Yes	-	-
F	Trampling: Heavy	-	-	-	-	-	-	Yes	Yes	-	-	-	-
	Burning or other damag	-	-	-	-	Yes	-	-	-	-	Yes	-	-
	Human impacts notes	-	en built near	hs trampling	-	Litter	-	-	-	-	Litter	-	-
	Dog fouling: None	-	-	-	-	None	None	-	None	None	-	-	None
ts	Dog fouling: Low	Yes	Yes	Yes	-	-	-	-	-	-	-	-	-
ac	Dog fouling: moderate	-	-	-	-	-	-	-	-	-	-	Yes	-
Ĕ	Dog fouling: high	-	-	-	Yes	-	-	Yes	-	-	Yes	-	-
Jal	Livestock present	-	-	-	-	-	-	-	-	-	-	-	-
nin	Deer grazing signs	-	-	-	-	-	-	-	-	-	-	-	-
•	Deer dung present	Yes	Yes	Yes	-	-	-	-	Yes	Yes	Yes	Yes	Yes
	Animal impact notes	-	-	-	-	-	-	-	-	-	-	-	-
nce	None	None	None	-	-	-	None	-	-	-	-	None	None
Site	Moderate	Yes	-	Yes	Yes	Yes	-	-	Yes	-	Yes	-	-
dist	Heavy	-	-	-	Yes	-	-	Yes	-	-	-	-	-

	Site Name		Anson's Bank	(
	Site number		13	
	NVC	U4	W16	W16
	Plot number	а	b	С
	Bike tracks	No	No	No
cts	Vehicle tracks	Yes	-	-
npa	Trampling: None	-	Yes	Yes
u lu	Trampling: Low	-	-	-
ma	Trampling: Moderate	-	-	-
Ηu	Trampling: Heavy	Yes	-	-
	Burning or other damag	-	-	-
	Human impacts notes	-	-	-
	Dog fouling: None	-	None	None
s	Dog fouling: Low	Yes	-	-
act	Dog fouling: moderate	-	-	-
Ĕ	Dog fouling: high	-	-	-
าลเ	Livestock present	-	-	-
nin	Deer grazing signs	-	-	Yes
A	Deer dung present	Yes	Yes	Yes
	Animal impact notes	-	-	-
nce	None	-	None	None
Site urba	Moderate	Yes	-	-
dist	Heavy	-	-	-

Appendix 4: Constancy tables for each plot (Constant species highlighted in bold).

Site Name		[Duffield	ls			
Taxon \ quadrat code	1Ai	1Aii	1Aiii	1Aiv	1Av	Frequency	Abundance Range
Agrostis capillaris	8	8	6	8	6	V	6_8
Dactylis glomerata	5	5	5	4	5	V	4_5
Holcus lanatus	3	-	-	-	4	=	3_4
Holcus mollis	4	5	6	5	-	IV	4_6
Lolium perenne	-	4	4	5	6	IV	4_6
Poa trivialis	2	2	-	-	-	=	2_2
Bare ground %	0	0	0	0	0		
Total number of species per quadrat	5	5	4	4	4		

Site Name		[Duffield	ds			
Taxon/quadrat code	1Bi	1Bii	1Biii	1Biv	1Bv	Frequency	Abundance Range
Agrostis capillaris	8	8	8	8	8	V	8_8
Arrhenatherum elatius	-	4	-	-	-	I	4_4
Brachythecium rutabulum	3	3	-	-	-	II	3_3
Festuca ovina agg.	7	4	6	6	6	V	4_7
Galium saxatile	3	4	4	4	4	V	3_4
Holcus lanatus	3	4	-	-	3		3_4
Holcus mollis	6	6	5	5	5	V	5_6
Juncus effusus	-	-	2	-	-	I	2_2
Poa humilis	-	2	-	-	-	I	2_2
Rhytidiadelphus							
squarrosus	3	3	3	3	3	V	3_3
Vaccinium vitis-idaea	-	2	-	-	-	I	2_2
Bare ground %	0	0	0	0	0		
Total number of species per quadrat	6	9	5	4	5		

Site Name		[Duffield	ls			
Taxon/quadrat code	1Ci	1Cii	1Ciii	1Civ	1Cv	Frequency	Abundance Range
Agrostis capillaris	4	-	-	-	-	-	4_4
Avenella flexuosa	4	4	-	4	3	IV	3_4
Calluna vulgaris	4	6	8	7	4	V	4_8
Festuca ovina	4	-	-	-	-	Ι	4_4
Galium saxatile	3	3	-	-	-	=	3_3
Hypnum jutlandicum	-	6	6	7	7	IV	6_7
Molinia caerulea	-	4	9	2	8	IV	2_9
Pleurozium schreberi	3	-	-	-	-	-	3_3
Rhytidiadelphus							
squarrosus	4	-	-	-	-		4_4
Scleropodium purum	-	2	-	-	-		2_2
Vaccinium vitis-idaea	10	9	8	9	9	V	8_10
Bare ground %	0	0	0	0	0		
Total number of species per quadrat	8	7	4	5	5		

Site Name		Fl	int Fie	lds			
Taxon/quadrat code	2Ai	2Aii	2Aiii	2Aiv	2Av	Frequency	Abundance Range
Agrostis capillaris	7	5	6	5	5	V	5_7
Cynosurus cristatus	5	-	-	-	-	I	5_5
Dactylis glomerata	4	5	4	-	4	IV	4_5
Festuca rubra agg.	-	5	3	-	-	II	3_5
Holcus lanatus	7	7	9	4	5	V	4_9
Juncus tenuis	-	-	-	-	2	I	2_2
Lolium perenne	4	4	-	9	9	IV	4_9
Lotus corniculatus	3	4	-	-	-	II	3_4
Plantago lanceolata	2	-	-	-	-	I	2_2
Plantago major	-	-	-	2	-	I	2_2
Poa annua	-	-	-	6	5	II	5_6
Polygonum aviculare sl.	-	-	-	3	1	II	1_3
Ranunculus repens	3	-	-	-	-	I	3_3
Rubus fruticosus agg.	-	-	4	-	-	I	4_4
Taraxacum officinale agg.	2	1	-	1	-	III	1_2
Trifolium repens	3	3	-	-	4	III	3_4
Vicia sepium	-	3	2	-	-	II	2_3
Bare ground %	0	3	0	16	4		
Total number of species per quadrat	10	9	6	7	8		

Site Name		F	lint Fie	lds			
Taxon/quadrat code	2Bi	2Bii	2Biii	2Biv	2Bv	Frequency	Abundance Range
Agrostis capillaris	3	-	6	-	3	III	3_6
Avenella flexuosa	6	9	5	5	9	V	5_9
Calluna vulgaris	-	-	-	-	4	I	4_4
Carex pilulifera	-	-	-	-	4	I	4_4
Festuca ovina agg.	-	4	6	8	3	IV	3_8
Hypnum jutlandicum	3	6	-	5	5	IV	3_6
Molinia caerulea	4	4	-	-	4		4_4
Pteridium aquilinum	4	-	5	4	3	IV	3_5
Quercus robur (g)	-	-	4	-	-	I	4_4
Rhytidiadelphus							
squarrosus	4	5	6	3	-	IV	3_6
Rubus fruticosus agg.	4	3	-	-	-	II	3_4
Scleropodium purum	5	5	-	-	-	II	5_5
Vaccinium myrtillus	-	-	-	-	-		0_0
Vaccinium vitis-idaea	-	-	-	5	4	II	4_5
Bare ground %	2	4	0	1	1		
Total number of species per quadrat	8	7	6	6	9		

Site Name		F	lint Fie				
Taxon/quadrat code	2Ci	2Cii	2Ciii	2Civ	2Cv	Frequency	Abundance Range
Brachythecium albicans	3	-	-	3	-	II	3_3
Avenella flexuosa	3	5	6	6	5	V	3_6
Calluna vulgaris	6	4	5	4	3	V	3_6
Hypnum jutlandicum	6	7	5	5	6	V	5_7
Molinia caerulea	-	4	4	4	3	IV	3_4
Vaccinium myrtillus	9	8	9	4	8	V	4_9
Vaccinium vitis-idaea	4	8	6	9	6	V	4_9
Bare ground %	4	3	4	2	3		
Total number of species per quadrat	6	6	6	7	6		

Site Name		Brin	dley Bo	ottom			
Taxon/quadrat code	ЗАi	3Aii	3Aiii	3Aiv	3Av	Frequency	Abundance Range
Agrostis capillaris	6	5	7	6	4	V	4_7
Dactylis glomerata	-	3	4	4	-	III	3_4
Festuca rubra agg.	-	-	3	4	-	II	3_4
Holcus lanatus	-	-	7	6	6	III	6_7
Lolium perenne	9	10	-	8	9	IV	8_10
Lotus corniculatus	4	-	-	4	-	II	4_4
Plantago lanceolata	-	1	-	2	2	III	1_2
Plantago major	-	2	-	-	-	I	2_2
Poa annua	3	3	-	-	-	II	3_3
Trifolium repens	5	5	3	6	4	V	3_6
Veronica serpyllifolia	1	-	-	-	-	I	1_1
Bare ground %	10	2	0	0	0		
Total number of species per quadrat	6	7	5	8	5		

Site Name		Brin	dley Bo	ottom			
Taxon/quadrat code	3Bi	3Bii	3Biii	3Biv	3Bv	Frequency	Abundance Range
Agrostis capillaris	6	8	8	7	6	V	6_8
Calluna vulgaris	-	1	-	-	-	I	1_1
Eurhynchium praelongum	3	-	-	-	-	I	3_3
Festuca rubra agg.	6	6	6	6	6	V	6_6
Galium saxatile	3	-	-	-	-	I	3_3
Holcus lanatus	6	5	6	4	6	V	4_6
Hypochaeris radicata	-	-	1	-	-	I	1_1
Juncus effusus	-	-	-	-	2	I	2_2
Nardus stricta	-	4	4	5	-		4_5
Pteridium aquilinum	2	-	-	-	-	I	2_2
Rubus fruticosus agg.	1	-	-	-	-	I	1_1
Trifolium dubium	1	-	-	-	-	I	1_1
Bare ground %	0	0	0	0	0		
Total number of species per quadrat	8	5	5	4	4		

Site Name		Brin	dley Bo	ottom			
Taxon/quadrat code	3Ci	3Cii	3Ciii	3Civ	3Cv	Frequency	Abundance Range
Avenella flexuosa	10	10	4	8	7	V	4_10
Betula pendula (g)	4	-	4	-	-	=	4_4
Calluna vulgaris	4	5	9	5	5	V	4_9
Campylopus introflexus	-	-	-	-	1	-	1_1
Dicranella heteromalla	-	-	-	1	-	-	1_1
Dicranum scoparium	-	-	-	3	-	-	3_3
Hypnum cupressiforme sl.	3	-	-	-	-	-	3_3
Hypnum jutlandicum	6	5	8	4	4	V	4_8
Molinia caerulea	4	4	4	-	4	IV	4_4
Pteridium aquilinum	4	3	4	6	-	IV	3_6
Rubus fruticosus agg.	-	-	-	1	-	Ι	1_1
Scleropodium purum	3	3	3	3	3	V	3_3
Vaccinium myrtillus	3	2	-	4	3	IV	2_4
Bare ground %	1	0	3	1	2		
Total number of species per quadrat	9	7	7	9	7		

Site Name		W	hite Ho	use			
Taxon/quadrat code	4Ai	4Aii	4Aiii	4Aiv	4Av	Frequency	Abundance Range
Agrostis capillaris	5	8	5	5	6	V	5_8
Arrhenatherum elatius	6	-	4	-	-	II	4_6
Cirsium arvense	-	-	1	-	-	I	1_1
Dactylis glomerata	4	4	-	4	4	IV	4_4
Festuca rubra agg.	6	4	-	-	4		4_6
Holcus lanatus	-	-	9	9	9	III	9_9
Holcus mollis	-	8	-	-	-	I	8_8
Lolium perenne	-	-	-	4	4	II	4_4
Lotus corniculatus	-	4	-	-	-	I	4_4
Plantago lanceolata	4	4	3	-	3	IV	3_4
Rubus fruticosus agg.	-	-	4	-	-	I	4_4
Trifolium repens	3	3	-	2	3	IV	2_3
Veronica chamaedrys	5	-	-	-	-	I	5_5
Bare ground %	2	0	2	1	1		
Total number of species per quadrat	7	7	6	5	7		

Site Name		W	nite Ho	use			
Taxon/quadrat code	4Bi	4Bii	4Biii	4Biv	4Bv	Frequency	Abundance Range
Agrostis capillaris	4	-	4	4	4	IV	4_4
Arrhenatherum elatius	-	-	-	4	-	-	4_4
Avenella flexuosa	6	6	7	5	5	V	5_7
Brachythecium albicans	2	2	-	3	2	IV	2_3
Calluna vulgaris	7	6	5	-	5	IV	5_7
Carex pilulifera	-	-	-	-	2	-	2_2
Chamaenerion							
angustifolium	4	-	-	3	4	III	3_4
Erica cinerea	3	-	-	3	5		3_5
Festuca ovina agg.	-	4	4	4	-	=	4_4
Galium saxatile	3	4	5	3	3	V	3_5
Holcus lanatus	4	6	4	5	5	V	4_6
Hypnum jutlandicum	6	5	4	3	5	V	3_6
Pleurozium schreberi	4	3	5	4	5	V	3_5
Rhytidiadelphus							
squarrosus	-	-	4	1	2		1_4
Rubus fruticosus agg.	4	5	5	4	6	V	4_6
Scleropodium purum	-	-	2	-	-	-	2_2
Vaccinium vitis-idaea	5	5	4	3	4	V	3_5
Bare ground %	2	1	1	4	2		
Total number of species per quadrat	12	10	12	14	14		

Site Name		W	hite Ho	use			
Taxon/quadrat code	4Ci	4Cii	4Ciii	4Civ	4Cv	Frequency	Abundance Range
Agrostis capillaris	6	6	4	5	7	V	4_7
Arrhenatherum elatius	6	8	7	6	8	V	6_8
Cerastium fontanum	-	2	1	-	3		1_3
Chamaenerion							
angustifolium	3	-	-	-	4	II	3_4
Cirsium arvense	-	-	-	4	-		4_4
Cynosurus cristatus	-	-	3	-	-	I	3_3
Dactylis glomerata	-	2	3	-	-	II	2_3
Dryopteris filix-mas	-	-	-	-	4	I	4_4
Elytrigia repens	3	-	4	-	-	II	3_4
Festuca rubra agg.	7	5	6	4	6	V	4_7
Holcus lanatus	6	7	5	6	6	V	5_7
Jacobaea vulgaris	-	-	1	-	-	I	1_1
Linaria vulgaris	2	-	3	4	3	IV	2_4
Plantago lanceolata	2	3	3	-	-		2_3
Poa pratensis	2	-	3	-	-	II	2_3
Rhytidiadelphus							
squarrosus	4	-	6	-	-	II	4_6
Rumex acetosa	-	-	-	-	3		3_3
Trifolium repens	3	-	3	-	-	II	3_3
Trisetum flavescens	-	-	4	-	-	I	4_4
Vicia cracca	-	4	3	-	-	II	3_4
Bare ground %	3	1	1	4	0		
Total number of species per quadrat	11	8	16	6	9		

Site Name		Pen	kridge	Bank			
Taxon/quadrat code	5Ai	5Aii	5Aiii	5Aiv	5Av	Frequency	Abundance Range
Agrostis capillaris	4	5	5	6	6	V	4_6
Anthoxanthum odoratum	4	4	-	-	-	II	4_4
Calliergonella cuspidata	-	2	-	-	-	I	2_2
Cerastium fontanum	-	1	-	-	1	II	1_1
Cynosurus cristatus	6	6	4	6	4	V	4_6
Dactylis glomerata	-	-	3	4	3		3_4
Elytrigia repens	-	-	4	-	-	I	4_4
Festuca rubra agg.	4	4	5	5	5	V	4_5
Holcus lanatus	-	2	-	4	4		2_4
Jacobaea vulgaris	3	3	2	-	3	IV	2_3
Lathyrus pratensis	-	-	-	-	1	I	1_1
Lolium perenne	5	4	5	5	5	V	4_5
Lotus corniculatus	4	-	-	-	4	II	4_4
Plantago lanceolata	5	5	2	1	-	IV	1_5
Poa annua	-	-	-	1	-	I	1_1
Poa trivialis	2	2	-	-	-	II	2_2
Ranunculus repens	2	2	-	-	-	II	2_2
Rhytidiadelphus							
squarrosus	3	5	-	3	3	IV	3_5
Rumex acetosa	-	1	-	-	-	I	1_1
Taraxacum officinale agg.	1	-	1	1	-	III	1_1
Trifolium repens	5	5	4	4	5	V	4_5
Urtica dioica	-	-	2	-	-		2_2
Veronica chamaedrys	1	-	2	1	-	III	1_2
Veronica serpyllifolia	2	3	-	-	-	II	2_3
Bare ground %	1	2	3	0	3		
Total number of species per quadrat	15	16	12	12	12		

Site Name		Pen	kridge	Bank			
Taxon/quadrat code	5Bi	5Bii	5Biii	5Biv	5Bv	Frequency	Abundance Range
Agrostis capillaris	4	4	-	-	4	III	4_4
Avenella flexuosa	5	4	4	3	4	V	3_5
Betula pendula (g)	-	-	1	-	-	I	1_1
Calluna vulgaris	4	6	4	8	4	V	4_8
Crataegus monogyna	4	-	-	-	-	I	4_4
Dicranum scoparium	-	3	-	-	-	I	3_3
Dryopteris dilatata	-	1	-	-	-	I	1_1
Empetrum nigrum	7	9	7	8	6	V	6_9
Erica cinerea	-	3	-	-	-	I	3_3
Erica tetralix	-	2	4	4	4	IV	2_4
Festuca ovina agg.	4	2	-	-	-	II	2_4
Galium saxatile	1	-	-	-	-	I	1_1
Holcus lanatus	-	-	2	-	-	I	2_2
Hypnum jutlandicum	6	6	5	9	8	V	5_9
Molinia caerulea	-	2	7	5	4	IV	2_7
Pleurozium schreberi	3	-	-	-	-	I	3_3
Vaccinium myrtillus	5	5	6	-	6	IV	5_6
Vaccinium vitis-idaea	5	5	6	7	8	V	5_8
Bare ground %	1	0	2	0	2		
Total number of species per quadrat	11	13	10	7	9		

Site Name		Pen	kridge				
Taxon/quadrat code	5Ci	5Cii	5Ciii	5Civ	5Cv	Frequency	Abundance Range
Agrostis capillaris	4	5	5	5	5	V	4_5
Anthoxanthum odoratum	5	6	6	5	5	V	5_6
Arrhenatherum elatius	6	5	7	6	6	V	5_7
Atrichum undulatum	1	-	-	-	-	I	1_1
Avenella flexuosa	-	-	-	1	-	I	1_1
Calliergonella cuspidata	-	-	-	-	1	Ι	1_1
Cerastium fontanum	-	1	-	-	-	-	1_1
Cirsium arvense	-	-	-	-	1	Ι	1_1
Crataegus monogyna	-	-	-	-	4	-	4_4
Cynosurus cristatus	4	6	-	-	-	=	4_6
Dactylis glomerata	4	4	-	-	-	=	4_4
Epilobium montanum	-	-	1	-	-	-	1_1
Festuca rubra agg.	4	4	4	6	5	V	4_6
Holcus lanatus	5	4	5	6	4	V	4_6
Jacobaea vulgaris	-	2	1	1	1	IV	1_2
Lathyrus pratensis	3	-	2	1	-	I	1_3
Lotus corniculatus	1	2	-	3	4	IV	1_4
Plantago lanceolata	1	3	-	-	-	=	1_3
Pleurozium schreberi	-	-	3	-	-	-	3_3
Rhytidiadelphus							
squarrosus	3	4	4	4	4	V	3_4
Rumex acetosa	-	-	1	2	2	III	1_2
Scleropodium purum	-	-	2	-	-	I	2_2
Stellaria graminea	1	-	3	-	-	II	1_3
Trifolium repens	-	4	-	3	2	III	2_4
Trisetum flavescens	3	4	-	-	-	II	3_4
Veronica chamaedrys	4	-	-	-	-		4_4
Vicia cracca	1	-	1	-	-	II	1_1
Vicia sepium	-	-	2	1	2	III	1_2
Bare ground %	2	2	2	3	4		
Total number of species per quadrat	16	14	15	13	14		

Site Name			Aspen	S			
Taxon/quadrat code	6Ai	6Aii	6Aiii	6Aiv	6Av	Frequency	Abundance Range
Agrostis capillaris	5	5	5	6	6	V	5_6
Agrostis stolonifera	-	-	-	-	3	I	3_3
Cynosurus cristatus	4	-	3	-	-	II	3_4
Dactylis glomerata	3	-	-	1	1		1_3
Holcus lanatus	4	6	4	-	-		4_6
Hypochaeris radicata	1	2	4	2	3	V	1_4
Juncus bufonius sl.	-	-	-	-	4	I	4_4
Juncus tenuis	-	-	-	4	4	II	4_4
Lolium perenne	9	9	9	6	5	V	5_9
Matricaria discoidea	-	-	-	-	1	I	1_1
Plantago lanceolata	3	-	-	-	-	I	3_3
Plantago major	2	-	3	-	3		2_3
Poa annua	4	-	-	4	4		4_4
Poa pratensis	3	3	4	-	3	IV	3_4
Polygonum aviculare sl.	-	-	-	2	3	II	2_3
Scorzoneroides autumnalis	-	-	-	-	2	I	2_2
Taraxacum officinale agg.	3	-	-	-	1	II	1_3
Trifolium repens	9	9	8	4	4	V	4_9
Bare ground %	1	1	2	15	25		
Total number of species per quadrat	12	6	8	8	15		

Site Name			Aspen	s			
Taxon/quadrat code	6Bi	6Bii	6Biii	6Biv	6Bv	Frequency	Abundance Range
Avenella flexuosa	4	6	7	5	5	V	4_7
Calluna vulgaris	5	4	4	5	4	V	4_5
Chamaenerion							
angustifolium	-	2	-	-	-	I	2_2
Dicranum scoparium	1	-	2	-	-	II	1_2
Festuca ovina agg.	6	3	-	-	-	II	3_6
Holcus lanatus	3	2	-	-	-	II	2_3
Hypnum jutlandicum	7	8	7	6	5	V	5_8
Molinia caerulea	8	8	8	8	9	V	8_9
Polytrichum piliferum	1	-	-	-	-	I	1_1
Pseudoscleropodium							
purum	-	-	3	-	-	I	3_3
Taraxacum officinale agg.	1	-	-	-	-	I	1_1
Vaccinium myrtillus	-	-	-	1	-	I.	1_1
Vaccinium vitis-idaea	-	5	5	5	4	IV	4_5
Bare ground %	1	4	4	4	0		
Total number of species per quadrat	9	8	7	6	5		

Site Name			Aspen	S			
Taxon/quadrat code	6Ci	6Cii	6Ciii	6Civ	6Cv	Frequency	Abundance Range
Avenella flexuosa	4	4	2	1	2	V	1_4
Betula pendula (g)	-	-	-	-	1	-	1_1
Betula pubescens (g)	2	-	-	1	-	=	1_2
Calluna vulgaris	9	8	10	10	10	V	8_10
Cladonia impexa	-	-	-	-	2	-	2_2
Dicranella heteromalla	-	-	1	-	-	-	1_1
Dicranum scoparium	1	-	-	-	-	-	1_1
Festuca ovina agg.	-	-	-	-	2	Ι	2_2
Hypnum jutlandicum	5	6	6	4	6	V	4_6
Molinia caerulea	4	8	3	2	4	V	2_8
Pinus sylvestris	-	-	-	-	1	-	1_1
Vaccinium vitis-idaea	-	3	-	-	-	-	3_3
Bare ground %	10	2	6	6	4		
Total number of species per quadrat	6	4	5	5	8		

Site Name		Gla	cial Bo	ulder			
Taxon/quadrat code	7Ai	7Aii	7Aiii	7Aiv	7Av	Frequency	Abundance Range
Agrostis capillaris	9	5	5	6	7	V	5_9
Arrhenatherum elatius	-	-	-	3	-	I	3_3
Bellis perennis	-	-	1	-	-	I	1_1
Bryum sp.	-	-	-	-	3	I	3_3
Calluna vulgaris	-	3	3	-	3		3_3
Chamaenerion							
angustifolium	-	-	-	-	1		1_1
Cynosurus cristatus	-	5	5	3	-	III	3_5
Danthonia decumbens	-	-	3	-	-	I	3_3
Eurhynchium praelongum	-	-	-	2	-	I	2_2
Festuca ovina agg.	4	7	7	4	7	V	4_7
Festuca rubra agg.	6	3	-	5	5	IV	3_6
Holcus lanatus	4	-	-	4	4		4_4
Hypnum sp.	-	-	-	-	2	I	2_2
Hypochaeris radicata	3	4	4	3	3	V	3_4
Jacobaea vulgaris	-	-	3	-	-	I	3_3
Juncus bufonius sl.	-	-	-	-	1	I	1_1
Luzula campestris	-	-	1	3	-	II	1_3
Nardus stricta	2	-	-	-	3	II	2_3
Plantago coronopus	-	3	3	-	2		2_3
Plantago lanceolata	-	2	1	-	-	II	1_2
Poa pratensis	-	2	3	-	-	II	2_3
Polytrichum piliferum	-	-	-	-	3	I	3_3
Rhytidiadelphus							
squarrosus	3	-	-	2	2	III	2_3
Rubus fruticosus agg.	-	-	-	-	1	I	1_1
Sagina procumbens	-	1	1	-	-	II	1_1
Scleropodium purum	-	-	-	-	2	Ι	2_2
Scorzoneroides							
autumnalis	2	2	3	-	2	IV	2_3
Trifolium repens	-	4	4	-	-	II	4_4
Veronica serpyllifolia	-	1	-	-	-	I	1_1
Vulpia bromoides	2	-	-	-	-	I	2_2
Bare ground %	0	6	2	1	10		
Total number of species per quadrat	9	13	15	10	17		

Site Name		Gla	cial Bo	ulder			
Taxon/quadrat code	7Bi	7Bii	7Biii	7Biv	7Bv	Frequency	Abundance Range
Agrostis capillaris	-	-	4	3	-	II	3_4
Avenella flexuosa	4	7	5	6	7	V	4_7
Betula pubescens (g)	-	-	-	2	3	II	2_3
Calluna vulgaris	5	4	6	7	7	V	4_7
Carex pilulifera	4	4	2	-	2	IV	2_4
Festuca ovina agg.	4	4	-	3	2	IV	2_4
Holcus lanatus	2	-	-	-	-	I	2_2
Hypnum cupressiforme sl.	6	8	6	9	8	V	6_9
Juncus effusus	-	-	4	-	-	I	4_4
Juncus squarrosus	-	-	3	-	-	I	3_3
Molinia caerulea	4	4	4	4	4	V	4_4
Nardus stricta	4	4	4	4	3	V	3_4
Vaccinium myrtillus	-	-	4	-	6	II	4_6
Vaccinium vitis-idaea	6	7	-	-	-	II	6_7
Bare ground %	2	2	2	2	3		
Total number of species per quadrat	9	8	10	8	9		

Site Name		Gla	cial Bo	ulder			
Taxon/quadrat code	7Ci	7Cii	7Ciii	7Civ	7Cv	Frequency	Abundance Range
Avenella flexuosa	6	6	7	6	6	V	6_7
Betula pubescens (g)	2	2	-	-	-	=	2_2
Calluna vulgaris	8	9	6	9	6	V	6_9
Carex pilulifera	3	-	-	-	-	-	3_3
Chamaenerion							
angustifolium	-	-	1	-	-		1_1
Cladonia chlorophaea s.l.	1	-	-	-	-	I	1_1
Cladonia impexa	3	-	2	-	-	=	2_3
Dicranum scoparium	2	2	2	1	-	IV	1_2
Eurhynchium praelongum	-	-	-	-	2	-	2_2
Festuca ovina agg.	-	1	-	-	-	Ι	1_1
Hylocomium splendens	-	-	-	-	3	-	3_3
Hypnum cupressiforme sl.	8	4	9	6	5	V	4_9
Molinia caerulea	3	-	1	4	-	III	1_4
Pteridium aquilinum	-	-	4	4	-	=	4_4
Scleropodium purum	-	-	-	-	2	I	2_2
Vaccinium myrtillus	-	4	8	5	10	IV	4_10
Vaccinium vitis-idaea	4	5	4	6	5	V	4_6
Bare ground %	6	2	0	0	0		
Total number of species per quadrat	10	8	10	8	8		

Site Name		Co	oppice	Hill			
Taxon/quadrat code	8Ai	8Aii	8Aiii	8Aiv	8Av	Frequency	Abundance Range
Agrostis capillaris	7	8	7	7	7	V	7_8
Cerastium fontanum	1	-	-	-	-	I	1_1
Crataegus monogyna	1	-	-	-	-	I	1_1
Festuca rubra agg.	4	-	-	-	-	I	4_4
Holcus lanatus	7	8	5	7	7	V	5_8
Lolium perenne	4	7	6	6	2	V	2_7
Plantago major	-	2	-	-	-	I	2_2
Poa annua	-	4	-	4	-	II	4_4
Polygonum aviculare sl.	-	3	-	3	-	II	3_3
Rhytidiadelphus							
squarrosus	3	-	-	-	3	II	3_3
Rubus fruticosus agg.	4	-	1	-	2		1_4
Sagina procumbens	-	1	-	-	-	I	1_1
Trifolium repens	5	4	4	4	-	IV	4_5
Veronica serpyllifolia	-	-	-	1	-	I	1_1
Bare ground %	1	3	1	2	1		
Total number of species per quadrat	9	8	5	7	5		

Site Name		Co	oppice	Hill			
Taxon/quadrat code	8Bi	8Bii	8Biii	8Biv	8Bv	Frequency	Abundance Range
Agrostis capillaris	2	-	3	-	-	II	2_3
Avenella flexuosa	4	6	4	-	3	IV	3_6
Betula pubescens (g)	1	-	1	1	-		1_1
Brachythecium rutabulum	-	1	-	-	-	I	1_1
Calluna vulgaris	8	4	4	5	6	V	4_8
Carex pilulifera	-	-	-	1	1	II	1_1
Chamaenerion							
angustifolium	-	-	1	-	-	I	1_1
Dicranella heteromalla	4	3	3	-	2	IV	2_4
Dicranum scoparium	-	-	-	-	-		0_0
Digitalis purpurea	-	1	2	2	4	IV	1_4
Festuca ovina agg.	1	-	4	4	2	IV	1_4
Galium saxatile	-	-	3	4	4		3_4
Holcus lanatus	-	-	1	1	1		1_1
Hypnum jutlandicum	4	6	-	-	5		4_6
Luzula multiflora	-	-	-	1	-	I	1_1
Molinia caerulea	2	-	-	1	2		1_2
Pteridium aquilinum	5	7	8	6	7	V	5_8
Rubus fruticosus agg.	1	1	-	1	-		1_1
Scleropodium purum	-	2	-	-	-	I	2_2
Sorbus aucuparia (sapling)	-	1	-	-	-	I	1_1
Vaccinium myrtillus	6	8	6	5	6	V	5_8
Vaccinium vitis-idaea	3	3	3	-	3	IV	3_3
Bare ground %	10	2	8	15	12		
Total number of species per quadrat	12	12	13	12	13		

Site Name		Co	oppice				
Taxon/quadrat code	8Ci	8Cii	8Ciii	8Civ	8Cv	Frequency	Abundance Range
Avenella flexuosa	-	3	1	-	5		1_5
Calluna vulgaris	10	8	8	10	10	V	8_10
Cladonia impexa	2	3	1	-	-		1_3
Cladonia portentosa	-	-	-	1	-	I	1_1
Dicranum scoparium	3	1	-	2	3	IV	1_3
Hypnum jutlandicum	10	6	8	9	9	V	6_10
Vaccinium myrtillus	-	1	4	-	3		1_4
Bare ground %	0	50	15	2	0		
Total number of species per quadrat	4	6	5	4	5		

Site Name		Si	ster D	ora			
Taxon/quadrat code	9Ai	9Aii	9Aiii	9Aiv	9Av	Frequency	Abundance Range
Agrostis capillaris	5	8	6	7	7	V	5_8
Anthoxanthum odoratum	-	-	5	-	-	I	5_5
Arrhenatherum elatius	-	-	-	5	4	II	4_5
Brachythecium rutabulum	-	-	-	2	-	I	2_2
Bromus hordeaceus	-	-	-	3	3	II	3_3
Carex hirta	-	4	-	3	-	II	3_4
Cerastium fontanum	3	-	3	2	4	IV	2_4
Crepis capillaris	2	-	-	1	-	II	1_2
Dactylis glomerata	-	-	-	-	3	I	3_3
Epilobium parviflorum	1	-	-	-	-	I	1_1
Festuca ovina agg.	4	5	6	3	4	V	3_6
Festuca rubra agg.	-	-	-	4	-	I	4_4
Holcus lanatus	7	8	5	6	8	V	5_8
Jacobaea vulgaris	4	2	4	4	4	V	2_4
Lolium perenne	3	-	-	-	-	I	3_3
Luzula campestris	1	-	-	-	-	I	1_1
Plantago lanceolata	4	-	3	-	2		2_4
Rumex acetosella	-	-	3	1	3	III	1_3
Taraxacum officinale agg.	-	-	-	1	-	I	1_1
Trifolium repens	4	3	4	-	-		3_4
Vulpia bromoides	2	-	-	-	-	I	2_2
Bare ground %	3	2	3	2	4		
Total number of species per quadrat	12	6	9	13	10		

Site Name		Si	ister D				
Taxon/quadrat code	9Bi	9Bii	9Biii	9Biv	9Bv	Frequency	Abundance Range
Agrostis capillaris	5	6	6	6	6	V	5_6
Brachythecium rutabulum	-	3	1	-	-	II	1_3
Dactylis glomerata	-	-	-	-	2	I	2_2
Galium saxatile	3	-	1	-	-	II	1_3
Quercus robur	10	10	10	10	10	IV	10
Rhytidiadelphus							
squarrosus	3	4	4	3	3	V	3_4
Rubus fruticosus agg.	-	-	-	-	1	I	1_1
Bare ground %	75	75	80	60	40		
Total number of species per quadrat	4	4	5	3	5		

Site Name		S	ister Do	ora			
Taxon/quadrat code	9Ci	9Cii	9Ciii	9Civ	9Cv	Frequency	Abundance Range
Agrostis capillaris	5	-	4	3	5	IV	3_5
Aphanes arvensis	-	-	-	-	1	I	1_1
Arrhenatherum elatius	-	-	4	3	4		3_4
Avenella flexuosa	4	3	3	5	3	V	3_5
Brachythecium rutabulum	-	3	3	3	1	IV	1_3
Calluna vulgaris	5	10	10	8	5	V	5_10
Dryopteris dilatata	-	-	1	1	4		1_4
Dryopteris filix-mas	-	2	1	-	-	II	1_2
Eurhynchium praelongum	-	-	3	-	-	Ι	3_3
Festuca ovina agg.	6	-	-	-	-	I	6_6
Galium saxatile	-	1	-	-	-	I	1_1
Holcus lanatus	3	3	4	3	6	V	3_6
Hypnum cupressiforme sl.	3	-	-	-	-	I	3_3
Hypnum jutlandicum	-	4	4	4	4	IV	4_4
Lophocolea bidentata sl.	-	1	2	-	1		1_2
Nardus stricta	4	-	-	-	-	I	4_4
Polytrichum commune	3	-	-	-	-	I	3_3
Quercus robur (g)	-	2	-	-	2	II	2_2
Rhytidiadelphus							
squarrosus	5	-	3	4	3	IV	3_5
Rubus fruticosus agg.	-	-	-	-	6	I	6_6
Vaccinium myrtillus	-	-	-	5	-	I	5_5
Bare ground %	1	2	2	2	4		
Total number of species per quadrat	9	9	12	10	13		

Site Name		Р	unch Bo	wl			
Taxon/quadrat code	10Ai	10Aii	10Aiii	10Aiv	10Av	Frequency	Abundance Range
Agrostis capillaris	-	6	8	-	-	II	6_8
Dactylis glomerata	3	-	-	2	4	III	2_4
Holcus lanatus	8	8	6	4	7	V	4_8
Lolium perenne	6	6	6	8	6	V	6_8
Plantago major	-	-	3	-	-	I	3_3
Poa annua	4	4	4	2	-	IV	2_4
Poa trivialis	-	-	3	-	3	II	3_3
Polygonum aviculare sl.	-	2	3	2	3	IV	2_3
Pteridium aquilinum	5	4	-	-	7	III	4_7
Rubus fruticosus agg.	-	-	5	-	-	I	5_5
Trifolium repens	3	2	-	4	-	III	2_4
Urtica dioica	-	3	-	1	-	II	1_3
Bare ground %	3	3	10	3	0		
Total number of species per quadrat	6	8	8	7	6		

Site Name		Р	unch Bo				
Taxon/quadrat code	10Bi	10Bii	10Biii	10Biv	10Bv	Frequency	Abundance Range
Rubus fruticosus agg.	4	4	3	-	-		3_4
Pteridium aquilinum	10	10	10	10	10	V	10_10
Bare ground %	90	90	90	90	90		
Total number of species per quadrat	2	2	2	1	1		

Site Name		Р					
Taxon/quadrat code	10Ci	10Cii	10Ciii	10Civ	10Cv	Frequency	Abundance Range
Brachythecium rutabulum	3	3	-	-	-	II	3_3
Pteridium aquilinum	10	10	10	10	10	V	10_10
Rubus fruticosus agg.	4	4	3	4	4	V	3_4
Bare ground %	90	90	90	90	90		
Total number of species per quadrat	1	1	1	1	1		

Site Name		Se	ven Spri	ings			
Taxon/quadrat code	11Ai	11Aii	11Aiii	11Aiv	11Av	Frequency	Abundance Range
Arrhenatherum elatius	6	4	4	5	5	V	4_6
Brachythecium rutabulum	-	3	3	-	-	Ш	3_3
Cirsium arvense	2	-	-	-	-	I	2_2
Cirsium vulgare	-	1	2	-	-	=	1_2
Dactylis glomerata	3	-	-	-	-	-	3_3
Dryopteris filix-mas	-	1	-	-	-	I	1_1
Festuca rubra agg.	-	-	-	-	3	-	3_3
Galium aparine	-	-	1	-	-	-	1_1
Geum urbanum	-	-	-	-	4	-	4_4
Holcus lanatus	8	8	8	8	8	V	8_8
Quercus robur (g)	-	-	-	1	-	-	1_1
Rubus fruticosus agg.	4	-	4	6	-	=	4_6
Rumex obtusifolius	-	-	1	-	-	-	1_1
Urtica dioica	9	9	10	9	10	V	9_10
Veronica serpyllifolia	-	2	-	-	-	I	2_2
Bare ground %	0	2	3	2	10		
Total number of species per quadrat	6	7	8	5	5		

Site Name		Se	ven Spri				
Taxon/quadrat code	11Bi	11Bii	11Biii	11Biv	11Bv	Frequency	Abundance Range
Brachythecium albicans	-	-	-	3	-	I	3_3
Hypnum jutlandicum	-	-	-	3	-	I	3_3
Brachythecium rutabulum	4	4	-	4	3	IV	3_4
Dicranella heteromalla	-	-	-	3	-	I	3_3
Fagus sylvatica (g)	1	-	1	-	-	II	1_1
Hedera helix	-	-	2	3	-	II	2_3
Holcus mollis	8	9	10	9	10	V	8_10
Pteridium aquilinum	6	7	5	4	-	IV	4_7
Rubus fruticosus agg.	8	6	6	5	6	V	5_8
Urtica dioica	-	-	1	-	-	I	1_1
Bare ground %	4	4	3	20	1		
Total number of species per quadrat	5	4	6	8	3		

Site Name		Se					
Taxon/quadrat code	11Ci	11Cii	11Ciii	11Civ	11Cv	Frequency	Abundance Range
Avenella flexuosa	-	3	-	-	-	I	3_3
Brachythecium rutabulum	3	3	3	-	4	IV	3_4
Dicranella heteromalla	-	3	-	-	-	I	3_3
Holcus mollis	3	-	-	-	-	I	3_3
Pteridium aquilinum	10	10	6	10	10	V	6_10
Rubus fruticosus agg.	6	7	8	9	9	V	6_9
Bare ground %	4	10	10	10	10		
Total number of species per quadrat	4	5	3	2	3		

Site Name		Chas	e Road (
Taxon/quadrat code	12Ai	12Aii	12Aiii	12Aiv	12Av	Frequency	Abundance Range
Agrostis capillaris	6	6	6	6	6	V	6_6
Holcus lanatus	4	4	4	-	2	IV	2_4
Jacobaea vulgaris	2	3	4	2	-	IV	2_4
Lolium perenne	10	10	10	9	10	V	9_10
Plantago lanceolata	2	2	-	3	3	IV	2_3
Plantago major	3	2	-	4	3	IV	2_4
Poa annua	-	3	-	3	3	III	3_3
Polygonum aviculare sl.	1	-	-	2	-	II	1_2
Ranunculus repens	-	-	4	3	-	II	3_4
Trifolium repens	9	9	9	9	9	V	9_9
Bare ground %	1	2	1	5	2		
Total number of species per quadrat	8	8	6	9	7		

Site Name		Chas	e Road (Corner			
Taxon/quadrat code	12Bi	12Bii	12Biii	12Biv	12Bv	Frequency	Abundance Range
Agrostis capillaris	5	9	10	9	7	V	5_10
Arrhenatherum elatius	5	6	6	6	5	V	5_6
Avenella flexuosa	2	2	-	-	3		2_3
Brachythecium rutabulum	3	3	3	-	-		3_3
Chamaenerion							
angustifolium	2	-	-	-	-	I	2_2
Cirsium vulgare	-	-	-	-	2	I	2_2
Dactylis glomerata	3	1	-	-	-	II	1_3
Digitalis purpurea	-	3	-	-	-	I	3_3
Eurhynchium praelongum	-	-	-	-	3	I	3_3
Festuca ovina agg.	4	-	-	-	4	II	4_4
Festuca rubra agg.	-	-	4	4	-	II	4_4
Holcus lanatus	4	5	4	6	4	V	4_6
Jacobaea vulgaris	-	-	-	-	1	I	1_1
Molinia caerulea	4	4	-	-	-	II	4_4
Nardus stricta	-	-	-	-	4	I	4_4
Poa pratensis	-	-	-	-	2	I	2_2
Poa trivialis	-	2	3	-	-	II	2_3
Potentilla erecta	2	1	-	-	-	II	1_2
Rhytidiadelphus							
squarrosus	-	2	-	-	3	II	2_3
Rubus fruticosus agg.	7	4	-	-	4		4_7
Scleropodium purum	-	-	-	-	3	I	3_3
Trifolium repens	-	-	3	4	-	II	3_4
Vaccinium myrtillus	-	-	-	-	4	I	4_4
Vaccinium vitis-idaea	-	-	-	-	3	Ι	3_3
Bare ground %	0	3	0	0	0		
Total number of species per quadrat	11	12	7	5	15		

Site Name		Chas	e Road (Corner			
Taxon/quadrat code	12Ci	12Cii	12Ciii	12Civ	12Cv	Frequency	Abundance Range
Avenella flexuosa	4	4	5	4	4	V	4_5
Betula pendula (g)	-	-	-	4	-	I	4_4
Brachythecium rutabulum	3	-	-	3	-	II	3_3
Calluna vulgaris	4	4	-	5	4	IV	4_5
Eurhynchium praelongum	3	-	-	3	3		3_3
Festuca ovina agg.	-	-	6	-	-	I	6_6
Galium saxatile	2	-	3	3	5	IV	2_5
Hypnum cupressiforme sl.	2	6	4	4	3	V	2_6
Hypnum jutlandicum	-	-	-	-	3	I	3_3
Molinia caerulea	9	4	6	5	8	V	4_9
Rhytidiadelphus squarrosus	2	-	2	-	-	11	2_2
Rubus fruticosus agg.	2	4	-	-	3		2_4
Vaccinium myrtillus	5	4	2	-	-		2_5
Vaccinium vitis-idaea	5	9	8	9	6	V	5_9
Bare ground %	2	0	0	0	0		
Total number of species per quadrat	11	7	8	9	9		

Site Name		Ar	ison's Ba				
Taxon/quadrat code	13Ai	13Aii	13Aiii	13Aiv	13Av	Frequency	Abundance Range
Agrostis capillaris	8	8	10	9	10	V	8_10
Anthoxanthum odoratum	-	-	-	-	4	-	4_4
Cirsium arvense	-	-	1	-	-	-	1_1
Festuca rubra agg.	4	4	3	5	4	V	3_5
Galium saxatile	3	4	-	-	-	=	3_4
Holcus lanatus	6	4	2	4	-	IV	2_6
Juncus effusus	-	1	-	2	-	Ш	1_2
Luzula campestris	4	4	2	3	3	V	2_4
Molinia caerulea	-	5	-	-	-	l	5_5
Nardus stricta	-	-	4	-	3	=	3_4
Poa annua	-	-	2	-	-	-	2_2
Poa trivialis	-	-	-	-	2	-	2_2
Potentilla erecta	4	5	3	4	4	V	3_5
Rhytidiadelphus							
squarrosus	6	5	2	5	-	IV	2_6
Trifolium repens	4	-	4	4	4	IV	4_4
Vaccinium myrtillus	-	4	-	-	-		4_4
Bare ground %	1	4	0	0	1		
Total number of species per quadrat	8	10	10	8	8		

Site Name		Ar	ison's B	ank			
Taxon/quadrat code	13Bi	13Bii	13Biii	13Biv	13Bv	Frequency	Abundance Range
Agrostis capillaris	6	9	7	6	7	V	6_9
Avenella flexuosa	6	4	-	5	5	IV	4_6
Betula pubescens (g)	-	-	-	1	-	I	1_1
Betula pubescens	10	10	10	10	10	V	10_10
Crataegus monogyna	-	1	-	-	-	I	1_1
Dactylis glomerata	1	-	-	-	-	I	1_1
Fagus sylvatica (g)	1	-	-	-	-	I	1_1
Galium saxatile	-	-	1	3	-	II	1_3
Holcus lanatus	-	-	4	4	4		4_4
Holcus mollis	6	4	5	6	6	V	4_6
Quercus robur (sapling)	-	-	-	2	1	II	1_2
Quercus seedling/sp	1	2	1				1_2
Rhytidiadelphus							
squarrosus	6	5	6	7	6	V	5_7
Rubus fruticosus agg.	5	5	9	6	6	V	5_9
Sorbus aucuparia (g)	1	-	-	-	-	I	1_1
Ulex europaeus	2	-	-	1	-	II	1_2
Bare ground %	0	0	0	0	0		
Total number of species per quadrat	11	8	8	11	8		

Site Name		Ar	nson's Ba	ank			
Taxon/quadrat code	13Ci	13Cii	13Ciii	13Civ	13Cv	Frequency	Abundance Range
Agrostis capillaris	5	4	5	-	4	IV	4_5
Avenella flexuosa	6	4	5	6	5	V	4_6
Brachythecium rutabulum	3	6	6	5	5	V	3_6
Dryopteris dilatata	-	3	-	4	-	II	3_4
Eurhynchium praelongum	4	-	-	3	-	II	3_4
Galium saxatile	3	-	-	-	-	I	3_3
Holcus lanatus	4	2	5	5	5	V	2_5
Holcus mollis	-	-	-	5	-	I	5_5
Hypnum cupressiforme sl.	4	-	-	-	-	I	4_4
Prunus sp (seedling)	1	-	-	-	-	I	1_1
Quercus seedling/sp	1	-	-	-	-	I	1_1
Rhytidiadelphus loreus	2	-	-	-	-	I	2_2
Rubus fruticosus agg.	10	10	8	9	10	V	8_10
Sorbus aucuparia (sapling)	-	1	-	-	-	I	1_1
Ulex europaeus	-	-	4	-	-	I	4_4
Bare ground %	0	0	2	2	0		
Total number of species per quadrat	11	7	6	7	5		

Appendix 5: Results from MAVIS analysis of NVC data (Communities considered correct highlighted in bold).

Duffields

Flint Fields

Brindley Bottom

3A Community/Co-efficient

52.63

52.13

52.03

MG7

MG7B

MG7A

14	N N
Community/Co-efficient	
MG7d	43.48
MG7b	42.98
MG7a	41.84
MG7	41.79
MG7e	39.22
MG9b	35.18
MG6c	34.86
MG7c	32.94
MG7f	32.58
OV23b	32.48

1B	
Community/Co-efficient	
U20a	41.67
U1e	39.75
U20	36.44
W23	36.36
U4e	36.23
U6d	36.17
U5d	35.16
OV27a	34.95
W23b	34.84
SD12b	34.67

2A	
Community/Co-efficient	
MG7	55.68
MG7E	54.58
MG7A	53.15
MG7F	52.05
MG11a	51.45
MG7B	50.85
MG7D	50.26
MG6a	48.74
OV23c	47.90
MG6	45.65

2B	
Community/Co-efficient	
U2a	44.50
H8e	42.28
W16	42.01
U20b	41.79
W16a	40.28
U20	40.08
H2b	39.86
U20c	39.16
U5a	39.01
H12a	38.46

MG7E	51.84
MG7F	51.17
MG11a	50.97
OV23c	49.27
MG6	48.54
MG6c	48.22
MG6a	47.62
3B	
3B Community/C	Co-efficient
3B Community/C OV27	Co-efficient 47.02
3B Community/C OV27 OV27a	Co-efficient 47.02 42.17
3B Community/C OV27 OV27a W23a	Co-efficient 47.02 42.17 38.68
3B Community/C OV27 OV27a W23a W23b	Co-efficient 47.02 42.17 38.68 37.95

O a manustry (O a afficient		
3C		
MC9a	32.79	
MC8d	32.79	
U1f	33.59	
SD6e	35.43	
MC9e	35.90	
W23	37.50	
W23b	37.95	
w23a	38.68	

1C	
Community/Co-efficient	
H9e	50.98
H12a	50.85
H2a	45.45
H12	45.24
H2	44.71
U2	43.73
H12b	42.52
H2c	42.33
H8e	41.56
H9d	41.34

2C	
Community/Co-efficient	
H9e	50.93
H2b	50.31
H12a	49.35
H2	43.72
H12	41.67
H12b	41.59
U2b	39.51
H2a	38.40
H9a	38.18
W18b	38.11

3C	
Community/Co-efficient	
H2b	57.21
H2	51.79
H12a	49.95
W16	46.87
H9e	45.52
W16a	45.30
H9a	45.27
U2	43.11
H2a	42.84
H8e	41.37

White House

4A	
Community/Co-efficient	
MG11a	47.90
MG7E	47.72
MG6c	47.30
MG7	46.45
MG1a	46.22
MG9b	46.17
MG6	45.71
MG6a	44.75
MG6b	43.88
MG9	43.87

Penkridge Bank

5A	
Community/Co-efficient	
MG6	63.51
MG6a	63.08
MG6b	62.22
MG6c	58.99
MG7	57.82
MG7D	56.77
MG7E	55.60
MG11a	52.85
MG5a	52.34
MG7C	52.32

5B Community/Co-efficient

> H12a H8e

H12 H2b

H4 M15d

H12b

H2

U2 H12c 51.09

46.86 46.44

45.17 45.14

44.15

44.12 43.48

43.20

41.64

Aspens

6A		
Community/Co-efficient		
OV23c	55.31	
MG7F	52.82	
OV21	52.58	
OV21b	51.81	
MG6	50.87	
MG6c	50.59	
MG6b	50.58	
MG7	50.24	
MG6a	50.16	
MG11a	50.05	

6B	
Community/Co-efficient	
H9e	51.70
H2	48.72
H2b	47.45
H2a	46.90
H12a	46.72
U2	43.26
H12	41.99
H9a	41.67
Н9	40.71
H12b	39.93

H12b	39.93	
6C		
Community/Co-efficient		
H9e	56.24	
H2	48.71	
H2a	47.41	
H2b	47.38	
H12a	45.24	
H2c	42.14	
H9a	38.81	
M16a	38.23	
H9	37.85	
H9d	35.35	

4B	
Community/Co-efficient	
OV27a	45.07
H12a	44.78
H12c	44.69
H8e	44.08
H12	43.03
U2a	42.70
U20b	42.04
U5a	41.49
U5d	41.36
H16a	39.60

4C	
Community/Co-efficient	
MG1a	50.55
MG6b	48.00
MG9b	46.87
MG6	46.77
MG1b	46.73
SD9a	46.39
MG1	45.59
MG12a	45.57
SD9	45.53
MG6a	44.01

5C	
Community/Co-efficient	
MG1e	50.97
U4b	49.79
MG6b	48.06
MG5a	47.00
MG5	46.90
MC9e	46.67
MG5b	45.28
MG1	44.28
MG5c	44.22
MG1c	44.01

Glacial Boulder

7A	
Community/Co-efficient	
MG6b	43.31
U4	41.80
U4b	41.33
U4a	41.17
H7e	40.85
SD12a	40.79
SD12	40.43
U1f	39.90
MG6	39.55
U1b	39.34

7B

Community/Co-efficient

50.12

47.62

46.74

46.46

45.65

44.85

44.51

43.62

43.40

42.98

H9a

U5a

H8e

U2

U5d

H1d

H9e

H10

H10a

U5e

Coppice Hill

8A		
Community/Co-efficient		
MG7B	42.46	
MG7A	41.48	
MG6b	40.82	
MG11a	40.72	
MG7E	40.57	
MG7	39.63	
OV23c	39.13	
MG6a	39.00	
MG6	38.22	
MG7F	37.54	

8B

Community/Co-efficient

49.34

45.45

44.44

43.41

43.25

43.14

43.09 42.74

41.12

40.93

H8e

U20c

H12a

U20

U20b

W16a

H2b

H12c

H12

U2

Sister Dora

9A		
Community/Co-efficient		
U1b	48.92	
U1e	46.07	
SD10b	45.40	
U1	44.85	
MG6b	44.77	
U1d	43.58	
W23b	43.51	
MG6	42.59	
OV23d	42.26	
CG4c	40.58	

9B		
Community/Co-efficient		
W23	25.28	
U1e	24.83	
W23b	24.80	
W23a	24.77	
U6d	23.39	
W10d	23.22	
U16c	22.64	
U20a	20.49	
U4a	20.29	
U4e	20.06	

7C	
Community/Co-efficient	
H9a	63.29
H12a	56.74
H1	50.44
H2b	50.38
H8e	49.70
H2	48.89
W18d	47.18
Н9	47.09
H12	46.77
U2	46.73

8C	
Community/	Co-efficient
H12a	59.22
H9a	48.11
H2	46.08
H12	45.77
H2b	44.82
H2a	43.62
H12b	43.60
H9c	41.98
H1	41.67
H9	40.68

9C		
Community/Co-efficient		
U16c	39.43	
H12a	37.63	
U2	36.55	
W16	35.71	
U20b	34.31	
H8e	34.30	
W16a	34.25	
W17d	32.97	
U20	32.34	
W16b	31.61	
Punch Bowl

10A			
Community/Co-efficient			
MG7A 48.05			
MG7	47.11		
OV21	45.98		
OV23c	45.74		
MG7B	45.15		
MG11a	44.79		
MG7E	44.62		
OV10	42.94		
OV21c 42.42			
MG7D 41.53			

Seven Springs

11A			
Community/Co-efficient			
SD18b	44.56		
MG1b	44.06		
OV27	43.55		
OV27b	42.70		
S26b	37.20		
W24	36.36		
OV24	35.57		
OV24a	34.92		
OV25b 34.36			
MG1c	34.19		

11B Community/Co-efficient

35.22

32.22

32.18

28.90

27.66

27.48

27.13

25.05

W16a

W10d

W16

W10a

W10c

W14

W10

W10b

Chase Road Corner

12A			
Community/Co-efficient			
OV23c	52.85		
MG7E	50.68		
OV21	49.69		
OV21b	46.91		
MG7B 44.92			
MG7F	44.04		
OV23	43.31		
MG11a	43.29		
OV21c	43.10		
MG7A 42.49			

12B					
Community/Co-efficient					
OV27 49.53					
MG1a	47.04				
W23	46.04				
OV27b	45.05				
W23b	43.99				
MG1b	43.85				
MG1	43.61				
W23a	43.59				
MG9b	43.52				
MG1c 43.23					

12C			
Community/Co-efficient			
U2	46.78		
H8e	45.41		
H9e	44.18		
H9a	44.10		
U2b	43.57		
H9d	43.09		
U16c	40.16		
U2a	39.43		
H2b	38.03		
H9 37.64			

10B			
Community/Co-efficient			
U20c 24.45			
W25b	22.08		
W25	19.23		
W10d	19.12		
W15d	16.10		
W16a	15.38		
W25a	15.17		
W16	15.01		
W23c	14.35		
H2b	14.16		

10C				
Community/Co-efficient				
W25b 35.79				
W25	34.54			
W10d	34.36			
W23c	34.19			
W22a	28.48			
W25a	28.21			
W10c	27.62			
OV27c	26.82			
W22	25.69			
OV27 24.39				

W22	24.83		
W22a	24.63		
11	С		
Community/Co-efficient			
W10d	44.84		
W25b	34.97		
W10c	34.53		
W25	34.43		
W16a	33.95		
W16	33.28		
W10a	33.00		
W14	31.48		
W10	31.01		
W23c	30.30		

Anson's Bank

13A			
Community/Co-efficient			
U4a 49.30			
U4b	48.40		
U4	47.58		
U20a	44.19		
U4e	43.76		
U4d	41.67		
MC9e	41.49		
MG6b	39.85		
W23a	38.57		
U20 38.43			

13B			
Community/Co-efficient			
W23a	40.44		
W23	40.00		
W16a	39.05		
W23b	38.32		
W16	36.02		
U1e	33.93		
W4	33.72		
W16b	32.73		
W10d	31.81		
W17c	31.31		

13C			
Community/Co-efficient			
W16	44.03		
OV27	42.81		
W10d	42.20		
W16a	40.43		
OV27c	40.11		
W23a	38.42		
W25b	37.94		
W16b	37.62		
W23	37.36		
W23b	35.79		

Appendix 6a: Ellenberg Indicator Values for all plots/quadrats.

Duffields

	L	F	R	Ν
1Ai	6.5	5.4	5.0	4.6
1Aii	6.6	5.3	4.9	4.7
1Aiii	6.6	5.3	4.8	4.6
1Aiv	6.6	5.2	4.8	4.6
1Av	7.0	5.2	5.7	5.2
Mean	6.5	5.4	5.0	4.6

	L	F	R	Ν
1Bi	6.4	5.4	3.9	3.3
1Bii	6.5	5.5	4.3	3.8
1Biii	6.3	5.5	3.6	3.2
1Biv	6.3	5.4	3.6	3.1
1Bv	6.3	5.5	3.9	3.3
Mean	6.4	5.4	3.9	3.3

	L	F	R	Ν
1Ci	6.3	5.2	2.7	2.5
1Cii	6.4	5.8	2.3	2.3
1Ciii	6.7	6.4	2.4	2
1Civ	6.4	5.6	2.1	2.2
1Cv	6.5	6.2	2.3	2.1
Mean	6.3	5.2	2.7	2.5

Flint Fields

	L	F	R	Ν
2Ai	6.8	5.3	5.8	4.8
2Aii	7.0	5.1	5.9	4.9
2Aiii	6.7	5.5	5.7	5.1
2Aiv	7.1	5.1	5.7	5.9
2Av	7.1	5.3	5.8	5.6
Mean	6.8	5.3	5.8	4.8

	L	F	R	Ν
2Bi	6.2	5.8	3.4	3.5
2Bii	6.4	5.8	3.2	3
2Biii	6.4	5	3.6	3.2
2Biv	6.4	5	2.9	2.4
2Bv	6.4	5.5	2.7	2.5
Mean	6.2	5.8	3.4	3.5

	L	F	R	Ν
2Ci	6.3	5.7	2	2.1
2Cii	6.3	5.8	2.1	2.2
2Ciii	6.3	5.9	2.1	2.2
2Civ	6.3	5.7	2.1	2.2
2Cv	6.2	5.8	2.1	2.2
Mean	6.3	5.7	2.0	2.1

Brindley Bottom

	L	F	R	Ν
3Ai	7.1	4.9	5.6	5.1
3Aii	7.2	5.0	5.8	5.8
3Aiii	6.8	5.3	5.6	5.0
3Aiv	7.1	5.1	5.8	5.0
3Av	7.2	5.2	5.7	5.3
Mean	7.1	4.9	5.6	5.1

	L	F	R	Ν
3Bi	6.8	5.4	4.9	4.4
3Bii	6.9	5.6	4.7	4
3Biii	7	5.5	4.8	4.1
3Biv	7	5.6	4.7	4
3Bv	7	5.5	5.2	4.6
Mean	6.8	5.4	4.9	4.4

	L	F	R	Ν
3Ci	6.4	5.7	2.6	2.8
3Cii	6.4	5.8	2.3	2.5
3Ciii	6.7	5.8	2.6	2.6
3Civ	6.2	5.4	2.4	2.8
3Cv	6.5	6.1	2.2	2.4
Mean	6.4	5.7	2.6	2.8

White House

	L	F	R	Ν
4Ai	6.9	5.0	5.9	5.2
4Aii	6.7	5.1	5.0	4.1
4Aiii	6.7	5.5	5.8	5.2
4Aiv	7.0	5.4	5.8	5.2
4Av	7.1	5.3	5.8	5.1
Mean	6.9	5.0	5.9	5.2

	L	F	R	Ν
4Bi	6.3	5.5	3.5	3.4
4Bii	6.4	5.6	3.6	3.3
4Biii	6.3	5.5	3.5	3.4
4Biv	6.4	5.3	4.3	4
4Bv	6.4	5.4	3.6	3.5
Mean	6.3	5.5	3.5	3.4

	L	F	R	Ν
4Ci	7	5.1	6	5.4
4Cii	7	5.3	6	5.2
4Ciii	7	5	6.3	5.3
4Civ	7.1	5.2	6.3	5.5
4Cv	6.7	5.2	5.8	5.1
Mean	7.0	5.1	6.0	5.4

Penkridge Bank

	L	F	R	Ν
5Ai	7.0	5.1	5.6	4.6
5Aii	7.0	5.2	5.6	4.7
5Aiii	7.0	5.0	6.0	5.3
5Aiv	7.1	5.1	5.8	5.1
5Av	7.0	4.9	5.7	4.6
Mean	7.0	5.1	5.6	4.6

	L	F	R	Ν
5Bi	6.4	5.4	2.9	2.6
5Bii	6.6	5.8	2.4	2.1
5Biii	6.7	6.3	2.4	2
5Biv	6.8	6.2	2.1	1.7
5Bv	6.5	6	2.3	2
Mean	6.4	5.4	2.9	2.6

	L	F	R	Ν
5Ci	6.9	5.2	5.9	4.8
5Cii	7	5	5.8	4.6
5Ciii	6.9	5.4	5.5	4.9
5Civ	7	5.2	5.5	4.7
5Cv	6.9	5.1	5.7	4.8
Mean	6.9	5.2	5.9	4.8

Aspens

	L	F	R	Ν
6Ai	7.1	5.1	5.8	5.4
6Aii	7.2	5.1	5.6	5.4
6Aiii	7.2	5.0	5.7	5.3
6Aiv	7.1	5.2	5.4	5.3
6Av	7.1	5.5	5.6	5.3
Mean	7.1	5.1	5.8	5.4

	L	F	R	Ν
6Bi	6.9	6.2	3.3	2.6
6Bii	6.6	6	3	2.6
6Biii	6.5	6.2	2.3	2.3
6Biv	6.5	6.3	2.3	2.2
6Bv	6.6	6.4	2.4	2.2
Mean	6.9	6.2	3.3	2.6

	L	F	R	Ν
6Ci	6.8	6.1	2.4	2.4
6Cii	6.7	6.4	2.3	2.2
6Ciii	6.9	6.3	2.2	2.1
6Civ	6.9	6.3	2.3	2.2
6Cv	6.9	6.2	2.5	2.2
Mean	6.8	6.1	2.4	2.4

Glacial Boulder

	L	F	R	Ν
7Ai	7.1	5.2	4.8	3.8
7Aii	7.2	5.1	5.0	3.8
7Aiii	7.1	5.1	5.0	3.6
7Aiv	7.1	4.9	5.3	4.0
7Av	7.1	5.5	4.6	3.6
Mean	7.1	5.2	4.8	3.8

	L	F	R	Ν
7Bi	6.7	5.8	2.8	2.3
7Bii	6.6	5.7	2.6	2.2
7Biii	6.6	6.2	2.7	2.6
7Biv	6.7	6.1	2.8	2.6
7Bv	6.6	6.1	2.6	2.4
Mean	6.7	5.8	2.8	2.3

	L	F	R	Ν
7Ci	6.6	5.8	2.4	2.4
7Cii	6.4	5.6	2.2	2.4
7Ciii	6.2	5.5	2.3	2.5
7Civ	6.4	5.8	2.2	2.3
7Bv	6.2	5.6	2	2.2
Mean	6.6	5.8	2.4	2.4

Coppice Hill

	L	F	R	Ν
8Ai	6.9	5.3	5.6	5.2
8Aii	7.0	5.2	5.6	5.6
8Aiii	6.9	5.3	5.4	5.2
8Aiv	7.0	5.2	5.6	5.5
8Av	6.6	5.5	5.2	4.8
Mean	6.9	5.3	5.6	5.2

	L	F	R	Ν
8Bi	6.4	5.7	2.6	2.6
8Bii	6.1	5.5	2.5	2.7
8Biii	6.3	5.5	3	2.9
8Biv	6.4	5.8	3.1	2.8
8Bv	6.3	5.7	2.8	2.7
Mean	6.4	5.7	2.6	2.6

	L	F	R	Ν
8Ci	7.0	6.0	2.0	2.0
8Cii	6.7	5.8	2.0	2.3
8Ciii	6.6	5.9	2.0	2.1
8Civ	7.0	6.0	2.0	2.0
8Cv	6.6	5.7	2.0	2.3
Mean	7.0	6.0	2.0	2.0

Sister Dora

	L	F	R	Ν
9Ai	7.0	5.0	5.5	4.3
9Aii	6.7	5.5	5.3	4.4
9Aiii	6.8	5.2	4.9	3.8
9Aiv	7.0	5.1	5.7	4.6
9Av	6.9	5.0	5.5	4.4
Mean	7.0	5.0	5.5	4.3

	L	F	R	Ν
9Bi	6.0	5.4	3.6	3.6
9Bii	6.0	5.0	4.0	4.0
9Biii	6.0	5.1	3.9	3.9
9Biv	6.0	5.0	4.0	4.0
9Bv	6.2	5.1	4.9	4.7
Mean	6.0	5.4	3.6	3.6

	L	F	R	Ν
9Ci	6.7	5.6	3.4	2.9
9Cii	6.6	5.8	3.2	3.1
9Ciii	6.6	5.6	3.8	3.8
9Civ	6.5	5.6	3.3	3.4
9Cv	6.4	5.6	4.7	4.6
Mean	6.7	5.6	3.4	2.9

Punch Bowl

	L	F	R	Ν
10Ai	7.0	5.3	5.6	5.3
10Aii	6.8	5.3	5.4	5.4
10Aiii	6.8	5.4	5.6	5.4
10Aiv	7.3	5.2	6.1	6.1
10Av	7.0	5.3	5.4	5.2
Mean	7.0	5.3	5.6	5.3

	L	F	R	Ν
10Bi	6	5.3	3.9	3.9
10Bii	6	5.3	3.9	3.9
10Biii	6	5.2	3.7	3.7
10Biv	6	5	3	3
10Bv	6	5	3	3
Mean	6.0	5.3	3.9	3.9

	L	F	R	Ν
10Ci	6	5.3	3.9	3.9
10Cii	6	5.3	3.9	3.9
10Ciii	6	5.2	3.7	3.7
10Civ	6	5.3	3.9	3.9
10Cv	6	5.3	3.9	3.9
Mean	6.0	5.3	3.9	3.9

Seven Springs

	L	F	R	Ν
11Ai	6.7	5.7	6.6	6.5
11Aii	6.6	5.7	6.5	6.4
11Aiii	6.4	5.9	6.5	6.7
11Aiv	6.5	5.8	6.4	6.4
11Av	6.4	5.7	6.6	6.6
Mean	6.7	5.7	6.6	6.5

	L	F	R	Ν
11Bi	6.1	5.6	4.1	4.1
11Bii	6.2	5.6	3.9	3.9
11Biii	5.9	5.6	4.2	4.2
11Biv	6.0	5.5	4.2	4.1
11Bv	6.2	5.8	4.1	4.1
Mean	6.1	5.6	4.1	4.1
		E	D	N

	L	F	К	N
11Ci	6.0	5.5	3.9	3.9
11Cii	6.0	5.3	3.9	4.0
11Ciii	6.3	5.4	4.5	4.5
11Civ	6.2	5.4	4.3	4.3
11Cv	6.0	5.5	4.4	4.4
Mean	6.0	5.5	3.9	3.9

Chase Road Corner

	L	F	R	Ν
12Ai	7.1	5.1	5.7	5.5
12Aii	7.1	5.0	5.7	5.5
12Aiii	7.0	5.2	5.7	5.5
12Aiv	7.0	5.1	5.7	5.8
12Av	7.1	5.1	5.7	5.6
Mean	7.1	5.1	5.7	5.5

	L	F	R	Ν
12Bi	6.6	5.7	5.1	4.5
12Bii	6.5	5.8	4.9	4.8
12Biii	6.8	5.2	5.5	5.3
12Biv	6.8	5.2	5.6	5.2
12Bv	6.5	5.4	4.4	4
Mean	6.6	5.7	5.1	4.5

	L	F	R	Ν
12Ci	6.4	6.3	2.6	2.5
12Cii	6.3	5.8	2.7	2.7
12Ciii	6.4	5.8	2.7	2.3
12Civ	6.5	5.8	2.5	2.5
12Cv	6.4	6.2	2.8	2.7
Mean	6.4	6.3	2.6	2.5

Anson's Bank

	L	F	R	Ν
13Ai	6.8	5.4	4.8	4.0
13Aii	6.7	5.9	3.9	3.2
13Aiii	6.8	5.5	4.6	4.1
13Aiv	6.9	5.4	4.8	4.1
13Av	6.8	5.5	4.5	3.8
Mean	6.8	5.4	4.8	4.0

	L	F	R	Ν
13Bi	6.0	5.4	3.9	4.0
13Bii	6.1	5.4	4.1	4.2
13Biii	6.2	5.7	4.8	4.6
13Biv	6.2	5.6	4.1	4.0
13Bv	6.2	5.6	4.2	4.2
Mean	6.0	5.4	3.9	4.0

	L	F	R	Ν
13Ci	6.2	5.6	4.5	4.5
13Cii	6.0	5.7	4.6	4.9
13Ciii	6.3	5.5	4.7	4.4
13Civ	6.0	5.8	4.4	4.6
13Cv	6.4	5.4	4.0	4.0
Mean	6.2	5.6	4.5	4.5

Appendix 6b: Ellenberg Indicator Values for Light (L)

Ellenberg Indicator values for Light (L) are showing the open nature of the site, with some shading present around the edges from taller vegetation. The EIVs for light levels is relatively high, described as 'Plant generally in well-lit places, but also occurring in partial shade', though showing some variation (L = 6.0-7.0, mean 6.5). A partial list of the Ellenberg Light values is contained below.

L Value	Definition	Example species	N° of species
3	Shade plant, mostly less than 5% relative illumination, seldom more than 30% illumination when trees are in full leaf	Fagus sylvatica	1
4	Between 3 and 5	Geum urbanum, Hedera helix	4
5	Semi-shade plant, rarely in full light, but generally with more than 10% relative illumination when trees are in leaf	Dryopteris dilatata, D. filix-mas	5
6	Between 5 and 7	Avenella flexuosa, Galium saxatile, Pteridium aquilinum, Vaccinium myrtillus	25
7	Plant generally in well-lit places, but also occurring in partial shade	Agrostis stolonifera, Calluna vulgaris, Cerastium fontanum, Empetrum nigrum, Holcus lanatus, Rumex acetosella	56
8	Light-loving plant rarely found where relative illumination in summer is less than 40%	Aphanes arvensis, Erica tetralix, Festuca rubra, Lolium perenne, Scorzoneroides autumnalis	14
		Total	105

Partial Ellenberg Indicator Values for Light from PLANTATT (Hill et al., 2004)

Appendix 6c: Ellenberg Indicator Values for Moisture (F)

Ellenberg Indicator Values for Moisture (F) are showing the general uniformity of moisture values across the plots (F = 4.0-6.3, mean 5.4). The site contains species that are between 'Moist site indicators, mainly on fresh soils of average dampness'.

F Value	Definition	Example species	N° of species
3	Dry-site indicator, more often found on dry ground than in moist places	Brachythecium albicans, Polytrichum piliferum	2
4	Between 5 and 8	Aphanes arvensis, Jacobaea vulgaris, Lotus corniculatus, Trisetum flavescens	11
5	Moist-site indicators; mainly on fresh soils of average dampness	Avenella flexuosa, Erica cinerea, Festuca ovina, Lolium perenne, Prunella vulgaris	45
6	Between 5 and 7	Agrostis stolonifera, Calluna vulgaris, Empetrum nigrum, Galium saxatile, Holcus lanatus	33
7	Dampness indicator; mainly on constant moist or damp, but not on wet soils.	Betula pubescens, Juncus bufonius, Nardus stricta, Potentilla erecta	10
8	Between 7 and 9	Erica tetralix, Molinia caerulea	2
9	Wet-site indicators; often on water-saturated, badly aerated soils	Epilobium parviflorum	1
		Total	105

Partial Ellenberg Indicator values for Moisture from PLANTATT (Hill *et al.,* 2004)

Appendix 6d: Ellenberg Indicator Values for Reaction (R)

The EIVs for Reaction (linked to pH value) show the range for the site to be a gradient from lowest in heathland (R = 2.0-3.5, mean 2.7), through acid grassland (R = 3.9-4.9, mean 4.6), and into Mesotrophic grassland (R = 5.0-6.0, mean 5.6). Woodland plots were similar in reaction value to acid grassland with medium low values (R = 3.9-4.5, mean 4.0). The area as a whole ranged from 2.0-6.0, with a mean of 4.6.

R Value	Definition	Example species (bracketed species not found during current survey)	N° of species
1	Indicator of extreme acidity, never found on weakly acid or basic soils	(Andromeda polifolia, Rubus chamaemorus)	0
2	Between 1 and 3	Avenella flexuosa, Calluna vulgaris, Erica cinerea, Vaccinium vitis-idaea.	13
3	Acidity indicator, mainly on acid soils, but exceptionally also on neutral ones	Holcus mollis, Nardus stricta, Potentilla erecta, Pteridium aquilinum	11
4	Between 3 and 5	Betula pendula, Digitalis purpurea, Festuca ovina, Rumex acetosella.	13
5	Indicator of moderately acid soils, only found on very acid or on neutral to basic soils	Cerastium fontanum, Luzula campestris, Quercus robur, Stellaria graminea	14
6	Indicator of moderately acid soils, only found on very acid or on neutral to basic soils	Aphanes arvensis, Cynosurus cristatus, Plantago lanceolata, Veronica chamaedrys	33
7	Between 5 and 7	Agrostis stolonifera, Galium aparine, Trisetum flavescens, Vicia cracca	20
8	Indicator of weakly acid to weakly basic conditions; never found on very acid soils	Linaria vulgaris	1
		Total	105

Partial Ellenberg Indicator values for Reaction from PLANTATT (Hill et al., 2004)

Appendix 6e: Ellenberg Indicator Values for Fertility (N)

The EIVs for fertility (linked to nitrogen) shows the most range across the different broad habitats, and it is these differences which are in part the reason for this study. The site with the lowest nutrient value were the heathland plots (N = 2.0-3.4, mean 2.5). Acid grassland plots were then the next lowest (N = 3.3-4.4, mean 3.9). Woodland plots were intermediate between the two grasslands (N = 3.8-4.5, mean 4.0). Mesotrophic grassland (whether MG1, MG6 or MG7 NVC communities), were similar (N = 4.3-5.5, mean 5.0). One plot (Seven Springs 11a) which had an open vegetation community dominated by False Oat-grass Arrhenatherum elatius, Yorkshire Fog H. lanatus and Nettle Urtica dioica had the highest N value of 6.5. If taken as a whole, the range for all plots is 2.0-6.5, mean 4.3.

N Value	Definition	Example species	N° of species
1	Indicator of extremely infertile sites	Empetrum nigrum, Erica tetralix, Polytrichum piliferum	3
2	Between 1 and 3	Calluna vulgaris, Erica cinerea, Potentilla erecta, Vaccinium myrtillus, V. vitis-idaea	20
3	Indicator of more or less infertile sites	Avenella flexuosa, Galium saxatile, Pteridium aquilinum, Ulex europaeus	13
4	Between 3 and 5	Betula pubescens, Cynosurus cristatus, Quercus robur, Trisetum flavescens	24
5	Indicator of sites of intermediate fertility	Digitalis purpurea, Festuca rubra, Lathyrus pratensis, Veronica chamaedrys	18
6	Between 5 and 7	Agrostis stolonifera, Cirsium arvense, Lolium perenne, Rubus fruticosus	16
7	Plant often found in richly fertile places	Elymus repens, Plantago major, Poa annua, Polygonum aviculare	8
8	Between 7 and 9	Galium aparine, Urtica dioica	2
9	Indicator of extremely rich situations, such as cattle resting places or near polluted rivers	Rumex obtusifolius	1
	·	Total	105

Partial Ellenberg Indicator values for Nitrogen from PLANTATT (Hill et al., 2004)

105

Appendix 7: CSR values for all plots/quadrats. Duffields

	С	S	R
1Ai	3.41	2.50	2.59
1Aii	3.42	2.33	2.58
1Aiii	3.52	2.29	2.48
1Aiv	3.41	2.36	2.59
1Av	3.24	2.48	2.76
Mean	3.41	2.50	2.59

	С	S	R
1Bi	2.48	3.52	2.04
1Bii	2.75	3.25	2.06
1Biii	2.48	3.52	1.84
1Biv	2.35	3.65	1.91
1Bv	2.42	3.58	2.04
Mean	2.48	3.52	2.04

	С	S	R
1Ci	2.03	3.97	1.28
1Cii	2.27	3.73	1.00
1Ciii	2.68	3.32	1.00
1Civ	2.41	3.59	1.00
1Cv	2.50	3.50	1.00
Mean	2.03	3.97	1.28

Flint Fields

	С	S	R
2Ai	2.98	2.60	2.88
2Aii	3.08	2.68	2.70
2Aiii	3.21	2.79	2.50
2Aiv	2.30	2.00	3.70
2Av	2.76	2.12	3.24
Mean	2.98	2.60	2.88

	С	S	R
2Bi	3.10	2.90	1.29
2Bii	2.15	3.85	1.00
2Biii	2.73	3.27	1.46
2Biv	2.18	3.82	1.00
2Bv	2.38	3.62	1.18
Mean	3.10	2.90	1.29

	С	S	R
2Ci	2.68	3.32	1.00
2Cii	2.55	3.45	1.00
2Ciii	2.60	3.40	1.00
2Civ	2.44	3.56	1.00
2Cv	2.56	3.44	1.00
Mean	2.68	3.32	1.00

Brindley Bottom

	С	S	R
3Ai	2.61	2.39	3.11
3Aii	2.83	2.10	3.17
3Aiii	3.17	2.71	2.83
3Aiv	3.00	2.67	2.81
3Av	3.00	2.48	3.00
Mean	2.61	2.39	3.11
	С	S	R
3Bi	2.84	3.04	2.56
3Bii	2.67	3.33	2.58
3Biii	2.68	3.32	2.68
3Biv	2.55	3.45	2.55
3Bv	3.1	2.9	2.8
Mean	2.84	3.04	2.56
	С	S	R
3Ci	3.07	2.93	1
3Cii	2.83	3.17	1
3Ciii	3.32	2.68	1
3Civ	3.17	2.83	1
3Cv	2.63	3.37	1
Mean	3.07	2.93	1.00

White House

	С	S	R
4Ai	3.21	2.69	2.79
4Aii	3.23	2.69	2.54
4Aiii	3.23	2.77	2.46
4Aiv	3.17	2.58	2.83
4Av	3.12	2.67	2.88
Mean	3.21	2.69	2.79

	С	S	R
4Bi	2.70	3.30	1.40
4Bii	2.25	3.75	1.33
4Biii	2.24	3.76	1.42
4Biv	2.61	3.39	1.58
4Bv	2.62	3.38	1.43
Mean	2.70	3.30	1.40

	С	S	R
4Ci	3.38	2.38	2.63
4Cii	3.32	2.57	2.68
4Ciii	3.28	2.38	2.72
4Civ	3.48	2.24	2.52
4Cv	3.30	2.43	2.61
Mean	3.38	2.38	2.63

Penkridge Bank

	С	S	R
5Ai	2.76	2.67	2.98
5Aii	2.77	2.47	3.15
5Aiii	3.21	2.26	2.79
5Aiv	3.03	2.58	2.97
5Av	2.86	2.56	2.92
Mean	2.76	2.67	2.98
	С	S	R
5Bi	2.38	3.63	1.25
5Bii	2.47	3.53	1.26
5Biii	2.62	3.38	1.12
5Biv	2.48	3.52	1.00
5Bv	2.53	3.47	1.24
Mean	2.38	3.63	1.25
	С	S	R
5Ci	3.11	2.78	2.74
5Cii	2.96	2.67	2.84
5Ciii	3.08	2.68	2.76
5Civ	2.92	2.80	2.73
5Cv	3.00	2.76	2.49
Mean	3.11	2.78	2.74

Aspens

	С	S	R
6Ai	2.80	2.32	3.20
6Aii	3.00	2.47	3.00
6Aiii	2.92	2.50	3.08
6Aiv	2.56	2.08	3.44
6Av	2.33	2.02	3.58
Mean	2.80	2.32	3.20

	С	S	R
6Bi	2.37	3.56	1.33
6Bii	2.62	3.38	1.14
6Biii	2.50	3.50	1.00
6Biv	2.58	3.42	1.00
6Bv	2.59	3.41	1.00
Mean	2.37	3.56	1.33

	С	S	R
6Ci	2.89	3.11	1.00
6Cii	2.70	3.30	1.00
6Ciii	2.87	3.13	1.00
6Civ	3.00	3.00	1.00
6Cv	2.74	3.26	1.00
Mean	2.89	3.11	1.00

Glacial Boulder

С	S	R
2.44	3.31	2.69
2.51	3.17	2.59
2.33	3.15	2.57
2.74	3.26	2.55
2.38	3.38	2.31
2.44	3.31	2.69
	C 2.44 2.51 2.33 2.74 2.38 2.44	C S 2.44 3.31 2.51 3.17 2.33 3.15 2.74 3.26 2.38 3.38 2.44 3.31

	С	S	R
7Bi	1.97	4.03	1.12
7Bii	1.88	4.12	1.00
7Biii	2.56	3.44	1.22
7Biv	2.38	3.62	1.21
7Bv	2.47	3.53	1.00
Mean	1.97	4.03	1.12

	С	S	R
7Ci	2.46	3.54	1.00
7Cii	2.59	3.41	1.00
7Ciii	2.97	3.03	1.00
7Civ	2.88	3.12	1.00
7Cv	2.59	3.41	1.00
Mean	2.46	3.54	1.00

Coppice Hill

	С	S	R
8Ai	2.97	2.70	2.73
8Aii	2.56	2.25	3.44
8Aiii	3.00	2.57	2.91
8Aiv	2.53	2.22	3.47
8Av	3.00	2.89	2.78
Mean	2.97	2.70	2.73

	С	S	R
8Bi	3.06	2.94	1.12
8Bii	3.16	2.81	1.06
8Biii	2.95	3.00	1.30
8Biv	2.78	3.16	1.19
8Bv	2.85	3.05	1.26
Mean	3.06	2.94	1.12

	С	S	R
8Ci	3.00	3.00	1.00
8Cii	2.75	3.25	1.00
8Ciii	2.92	3.08	1.00
8Civ	3.00	3.00	1.00
8Cv	2.72	3.28	1.00
Mean	3.00	3.00	1.00

Sister Dora

С	S	R
2.40	2.73	3.00
2.73	2.97	2.60
2.31	2.92	2.87
2.73	2.50	2.92
2.64	2.60	2.90
2.40	2.73	3.00
	C 2.40 2.73 2.31 2.73 2.64 2.40	CS2.402.732.732.972.312.922.732.502.642.602.402.73

	С	S	R
9Bi	2.67	3.33	1.56
9Bii	3.00	3.00	1.75
9Biii	2.88	3.12	1.71
9Biv	3.00	3.00	1.75
9Bv	3.11	2.89	1.74
Mean	2.67	3.33	1.56

	С	S	R
9Ci	2.11	9	1.59
9Cii	2.76	3.24	1.38
9Ciii	3.04	2.96	1.81
9Civ	2.93	3.07	1.57
9Cv	2.97	2.94	1.92
Mean	2.11	3.89	1.59

Punch Bowl

	С	S	R
10Ai	3.17	1.97	2.83
10Aii	3.06	2.03	2.94
10Aiii	2.63	2.39	3.11
10Aiv	2.83	1.96	3.17
10Av	3.40	1.90	2.60
Mean	3.2	2.0	2.8

	С	S	R
10Bi	4.43	1.57	1.00
10Bii	4.43	1.57	1.00
10Biii	4.54	1.46	1.00
10Biv	5.00	1.00	1.00
10Bv	5.00	1.00	1.00
Mean	4.4	1.6	1.0

	С	S	R
10Ci	4.43	1.57	1
10Cii	4.43	1.57	1
10Ciii	4.54	1.46	1
10Civ	4.43	1.57	1
10Cv	4.43	1.57	1
Mean	4.4	1.6	1.0

Seven Springs

	С	S	R
11Ai	3.97	2.03	1.78
11Aii	3.80	1.96	2.16
11Aiii	3.77	1.92	1.92
11Aiv	3.79	2.21	1.72
11Av	3.70	2.30	2.03
Mean	4.0	2.0	1.8
	С	S	R
11Bi	3.89	2.11	1.29
11Bii	4.04	1.95	1.33
11Biii	3.90	2.10	1.33
11Biv	3.85	2.15	1.35
11Bv	3.71	2.29	1.48
Mean	3.9	2.1	1.3
	С	S	R
11Ci	4.21	1.79	1.16
11Cii	3.85	2.15	1.00
11Ciii	3.89	2.11	1.00
11Civ	4.04	1.96	1.00
11Cv	4.05	1.95	1.00
Mean	4.2	1.8	1.2

Chase Road Corner

	С	S	R
12Ai	2.81	2.24	3.19
12Aii	2.72	2.15	3.28
12Aiii	2.89	2.05	3.11
12Aiv	2.61	1.98	3.39
12Av	2.75	2.22	3.25
Mean	2.8	2.2	3.2

	С	S	R
12Bi	3.00	3.00	1.74
12Bii	3.11	2.76	2.24
12Biii	3.20	2.60	2.80
12Biv	3.21	2.66	2.79
12Bv	2.58	3.26	1.88
Mean	3.0	3.0	1.7

	С	S	R
12Ci	2.58	3.42	1.00
12Cii	2.55	3.45	1.00
12Ciii	1.97	4.03	1.00
12Civ	2.50	3.50	1.00
12Cv	2.33	3.67	1.00
Mean	2.6	3.4	1.0

Anson's Bank

	С	S	R
13Ai	2.58	3.30	2.58
13Aii	2.59	3.41	2.05
13Aiii	2.52	3.10	2.65
13Aiv	2.84	3.03	2.65
13Av	2.50	3.21	2.62
Mean	2.6	3.3	2.6

	С	S	R
13Bi	3.28	2.72	1.49
13Bii	3.29	2.71	1.63
13Biii	3.35	2.65	1.73
13Biv	3.14	2.86	1.59
13Bv	3.28	2.72	1.72
Mean	3.3	2.7	1.5

	С	S	R
13Ci	2.59	3.41	1.62
13Cii	2.83	3.17	1.63
13Ciii	2.81	3.19	1.74
13Civ	2.97	3.03	1.66
13Cv	2.64	3.36	2.29
Mean	2.6	3.4	1.6

Appendix 8: Example photographs of sites and individual quadrats.

Example of lowland heathland (H9), with good botanical diversity at Duffields (Quadrat 1Cii). Ericoids include Heather and Bilberry, with Wavy Hair-grass and Purple Moor-grass also present. Several bryophytes also dominate.

Example of lowland heathland (H9), with good botanical diversity at Penkridge Bank (Quadrat 5Bv). Ericoids include Heather, Crowberry, Bell Heather, Cross-leaved Heath, Bilberry and Cowberry, with Wavy Hair-grass and Purple Moor-grass also present. A number of bryophytes also dominate.

Coarse grassland (MG1) at White House (Quadrat 4Ci). Note tall grasses including False Oat-grass, Yorkshire Fog, and underneath Red Fescue. Occasional pockets of better areas here included Yellow Oat-grass and Common Toadflax.

Example of coarse grassland formed by sides of footpath at Duffield (Quadrat 1Ai). Grassland an example of MG7 dominated by Common Bent, Cock's-foot, and Creeping Soft-grass, with Perennial Rye-grass, Yorkshire Fog and Rough-stalked Meadow-grass also present.

Example of coarse grassland (MG7) formed by sides of footpath at Brindley Bottom (Quadrat 3Aii). Note trampling, disturbed patches from heavy pedestrian activity. Botanically very poor, dominated by Perennial Rye-grass and Common Bent with White Clover the only common herb.

Example of poor-quality acid grassland (U4), with low botanical diversity at Duffields (Quadrat 1Bi). Dominating is Common Bent, Sheep's Fescue, Creeping Soft-grass, herbs include Heath Bedstraw. In some places False Oat-grass had started to colonise (a sign of lack of grazing/cutting)

Note good quality heathland in distance.

Example of short acid grassland, with heavy trampling, (but retaining high botanical diversity) at Glacial Boulder (Quadrat 7Av). Dominant grasses include Common Bent, Sheep's Fescue and Red Fescue, with Common Cat's-ear and Autumn Hawkbit. Species present here included many examples of low grasslands e.g. Buck's-horn Plantain. Other acid indicators included Heath Grass and a suite of bryophytes. The same habitat is present in the longer grassland adjacent, just without the trampling by path edges.

Tall coarse vegetation, typical of nutrient enrichment by the sides of paths at Seven Springs (Quadrat 11Ai). Dominating area are Creeping Thistle and Common Nettle, with False Oat-grass and Yorkshire Fog the main grasses present.

Oak woodland with a bracken understorey (W10), at Seven Springs (plot view).

Oak-Birch-Wavy Hair-grass woodland with a bramble understorey (W16), at Anson's Bank (plot view).

Bracken dominated ground flora, with occasional Birch and Oak in the canopy (W25) at Punch Bowl (plot view).

Figure 17: Vaccinium species found at Flint Field. Left to right Cowberry V. vitis-idaea, Cannockberry/Hybrid Bilberry V. x intermedium and Bilberry V. myrtillus.

